Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Beilstein J Org Chem ; 13: 558-563, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28405235

RESUMO

Conjugated microporous polymers (CMPs) are materials of low density and high intrinsic porosity. This is due to the use of rigid building blocks consisting only of lightweight elements. These materials are usually stable up to temperatures of 400 °C and are chemically inert, since the networks are highly crosslinked via strong covalent bonds, making them ideal candidates for demanding applications in hostile environments. However, the high stability and chemical inertness pose problems in the processing of the CMP materials and their integration in functional devices. Especially the application of these materials for membrane separation has been limited due to their insoluble nature when synthesized as bulk material. To make full use of the beneficial properties of CMPs for membrane applications, their synthesis and functionalization on surfaces become increasingly important. In this respect, we recently introduced the solid liquid interfacial layer-by-layer (LbL) synthesis of CMP-nanomembranes via Cu catalyzed azide-alkyne cycloaddition (CuAAC). However, this process featured very long reaction times and limited scalability. Herein we present the synthesis of surface grown CMP thin films and nanomembranes via light induced thiol-yne click reaction. Using this reaction, we could greatly enhance the CMP nanomembrane synthesis and further broaden the variability of the LbL approach.

2.
Int J Syst Evol Microbiol ; 64(Pt 4): 1186-1193, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24408525

RESUMO

A Gram-stain-negative, oxidase and phosphatase-positive and catalase-negative, short rod-shaped bacterium was isolated from sediment of a drinking water reservoir in Germany. Based on 16S rRNA gene sequence and phenotypic properties, the bacterium belongs to the genus Rhodoferax within the family Comamonadaceae. The new taxon differed from related species mainly with respect to its fatty acid composition, low growth temperature, lack of pigments in young cultures and ability to utilize glycerol and d-mannose but not urea. The major fatty acids were C16 : 1ω7c and/or iso-C15 : 0 2-OH, C16 : 0, and C18 : 1ω7c. The only ubiquinone detected was ubiquinone Q-8. The DNA G+C content was 60.3-61 mol%. Because of the phenotypic and genotypic differences from the most closely related taxa, the new strain represents a novel species for which the name Rhodoferax saidenbachensis sp. nov. is proposed. The type strain is ED16(T) ( = CCUG 57711(T) = ATCC BAA-1852(T) = DSM 22694(T)). An emended description of the genus Rhodoferax is proposed. Based on the results of this study, strain T118(T) (Albidiferax ferrireducens) is properly placed in the genus Rhodoferax as Rhodoferax ferrireducens.


Assuntos
Comamonadaceae/classificação , Água Potável/microbiologia , Filogenia , Técnicas de Tipagem Bacteriana , Composição de Bases , Temperatura Baixa , Comamonadaceae/genética , Comamonadaceae/isolamento & purificação , DNA Bacteriano/genética , Ácidos Graxos/química , Genes Bacterianos , Sedimentos Geológicos/microbiologia , Alemanha , Dados de Sequência Molecular , Hibridização de Ácido Nucleico , RNA Ribossômico 16S/genética , Análise de Sequência de DNA , Ubiquinona/química , Abastecimento de Água
3.
Microorganisms ; 3(4): 695-706, 2015 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-27682112

RESUMO

A DNA extraction that comprises the DNA of all available taxa in an ecosystem is an essential step in population analysis, especially for next generation sequencing applications. Many nanoparticles as well as naturally occurring clay minerals contain charged surfaces or edges that capture negatively charged DNA molecules after cell lysis within DNA extraction. Depending on the methodology of DNA extraction, this phenomenon causes a shift in detection of microbial taxa in ecosystems and a possible misinterpretation of microbial interactions. With the aim to describe microbial interactions and the bio-geo-chemical reactions during a clay alteration experiment, several methods for the detection of a high number of microbial taxa were examined in this study. Altogether, 13 different methods of commercially available DNA extraction kits provided by seven companies as well as the classical phenol-chloroform DNA extraction were compared. The amount and the quality of nucleic acid extracts were determined and compared to the amplifiable amount of DNA. The 16S rRNA gene fragments of several taxa were separated using denaturing gradient gel electrophoresis (DGGE) to determine the number of different species and sequenced to get the information about what kind of species the microbial population consists of. A total number of 13 species was detected in the system. Up to nine taxa could be detected with commercially available DNA extraction kits while phenol-chloroform extraction lead to three detected species. In this paper, we describe how to combine several DNA extraction methods for the investigation of microbial community structures in clay.

4.
Front Plant Sci ; 6: 1137, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26734040

RESUMO

Tobacco mosaic virus (TMV) is a robust nanotubular nucleoprotein scaffold increasingly employed for the high density presentation of functional molecules such as peptides, fluorescent dyes, and antibodies. We report on its use as advantageous carrier for sensor enzymes. A TMV mutant with a cysteine residue exposed on every coat protein (CP) subunit (TMVCys) enabled the coupling of bifunctional maleimide-polyethylene glycol (PEG)-biotin linkers (TMVCys/Bio). Its surface was equipped with two streptavidin [SA]-conjugated enzymes: glucose oxidase ([SA]-GOx) and horseradish peroxidase ([SA]-HRP). At least 50% of the CPs were decorated with a linker molecule, and all thereof with active enzymes. Upon use as adapter scaffolds in conventional "high-binding" microtiter plates, TMV sticks allowed the immobilization of up to 45-fold higher catalytic activities than control samples with the same input of enzymes. Moreover, they increased storage stability and reusability in relation to enzymes applied directly to microtiter plate wells. The functionalized TMV adsorbed to solid supports showed a homogeneous distribution of the conjugated enzymes and structural integrity of the nanorods upon transmission electron and atomic force microscopy. The high surface-increase and steric accessibility of the viral scaffolds in combination with the biochemical environment provided by the plant viral coat may explain the beneficial effects. TMV can, thus, serve as a favorable multivalent nanoscale platform for the ordered presentation of bioactive proteins.

5.
Water Res ; 38(5): 1197-206, 2004 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-14975653

RESUMO

Populations of bacteria in biofilms from different sites of a drinking water production system were analysed. Polymerase chain reaction (PCR) and denaturing gradient gel electrophoresis (DGGE) analyses revealed changing DNA band patterns, suggesting a population shift during bank filtration and processing at the waterworks. In addition, common DNA bands that were attributed to ubiquitous bacteria were found. Biofilms even developed directly after UV disinfection (1-2m distance). Their DNA band patterns only partly agreed with those of the biofilms from the downstream distribution system. Opportunistic pathogenic bacteria in biofilms were analysed using PCR and Southern blot hybridisation (SBH). Surface water appeared to have a direct influence on the composition of biofilms in the drinking water distribution system. In spite of preceding filtration and UV disinfection, opportunistic pathogens such as atypical mycobacteria and Legionella spp. were found in biofilms of drinking water, and Pseudomonas aeruginosa was detected sporadically. Enterococci were not found in any biofilm. Bacterial cell counts in the biofilms from surface water to drinking water dropped significantly, and esterase and alanine-aminopeptidase activity decreased. beta-glucosidase activity was not found in the biofilms. Contrary to the results for planktonic bacteria, inhibitory effects were not observed in biofilms. This suggested an increased tolerance of biofilm bacteria against toxic compounds.


Assuntos
Biofilmes , Legionella/crescimento & desenvolvimento , Legionella/isolamento & purificação , Micobactérias não Tuberculosas/crescimento & desenvolvimento , Micobactérias não Tuberculosas/isolamento & purificação , Pseudomonas/crescimento & desenvolvimento , Pseudomonas/isolamento & purificação , Purificação da Água , Antibacterianos/farmacologia , Farmacorresistência Bacteriana , Monitoramento Ambiental , Filtração , Legionella/genética , Micobactérias não Tuberculosas/genética , Reação em Cadeia da Polimerase , Pseudomonas/genética
6.
J Mater Chem B ; 2(23): 3578-3581, 2014 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-32263794

RESUMO

A degradable polyphthalaldehyde-polystyrene block copolymer generated by modular ligation is reported for the first time serving as a nanochannel template for the formation of nanostructured materials. The polyphthalaldehyde-b-polystyrene copolymer was spin-coated onto a surface with subsequent polyphthalaldehyde block removal. Block conjugation and block removal were confirmed by H-NMR, SEC, AFM, and SEM.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA