Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
1.
Proc Natl Acad Sci U S A ; 120(47): e2313835120, 2023 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-37971402

RESUMO

The cyclic AMP response element (CRE) binding protein (CREB) is a transcription factor that contains a 280-residue N-terminal transactivation domain and a basic leucine zipper that mediates interaction with DNA. The transactivation domain comprises three subdomains, the glutamine-rich domains Q1 and Q2 and the kinase inducible activation domain (KID). NMR chemical shifts show that the isolated subdomains are intrinsically disordered but have a propensity to populate local elements of secondary structure. The Q1 and Q2 domains exhibit a propensity for formation of short ß-hairpin motifs that function as binding sites for glutamine-rich sequences. These motifs mediate intramolecular interactions between the CREB Q1 and Q2 domains as well as intermolecular interactions with the glutamine-rich Q1 domain of the TATA-box binding protein associated factor 4 (TAF4) subunit of transcription factor IID (TFIID). Using small-angle X-ray scattering, NMR, and single-molecule Förster resonance energy transfer, we show that the Q1, Q2, and KID regions remain dynamically disordered in a full-length CREB transactivation domain (CREBTAD) construct. The CREBTAD polypeptide chain is largely extended although some compaction is evident in the KID and Q2 domains. Paramagnetic relaxation enhancement reveals transient long-range contacts both within and between the Q1 and Q2 domains while the intervening KID domain is largely devoid of intramolecular interactions. Phosphorylation results in expansion of the KID domain, presumably making it more accessible for binding the CBP/p300 transcriptional coactivators. Our study reveals the complex nature of the interactions within the intrinsically disordered transactivation domain of CREB and provides molecular-level insights into dynamic and transient interactions mediated by the glutamine-rich domains.


Assuntos
Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico , Glutamina , Glutamina/metabolismo , Ativação Transcricional , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/genética , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/metabolismo , Regulação da Expressão Gênica , Sítios de Ligação , Ligação Proteica/fisiologia
2.
Proc Natl Acad Sci U S A ; 120(39): e2303455120, 2023 09 26.
Artigo em Inglês | MEDLINE | ID: mdl-37722054

RESUMO

Cows produce antibodies with a disulfide-bonded antigen-binding domain embedded within ultralong heavy chain third complementarity determining regions. This "knob" domain is analogous to natural cysteine-rich peptides such as knottins in that it is small and stable but can accommodate diverse loops and disulfide bonding patterns. We immunized cattle with SARS-CoV-2 spike and found ultralong CDR H3 antibodies that could neutralize several viral variants at picomolar IC50 potencies in vitro and could protect from disease in vivo. The independent CDR H3 peptide knobs were expressed and maintained the properties of the parent antibodies. The knob interaction with SARS-CoV-2 spike was revealed by electron microscopy, X-ray crystallography, NMR spectroscopy, and mass spectrometry and established ultralong CDR H3-derived knobs as the smallest known recombinant independent antigen-binding fragment. Unlike other vertebrate antibody fragments, these knobs are not reliant on the immunoglobulin domain and have potential as a new class of therapeutics.


Assuntos
COVID-19 , SARS-CoV-2 , Feminino , Animais , Bovinos , Anticorpos , Fragmentos Fab das Imunoglobulinas/genética , Dissulfetos
3.
Proc Natl Acad Sci U S A ; 114(8): 1916-1921, 2017 02 21.
Artigo em Inglês | MEDLINE | ID: mdl-28167786

RESUMO

Stress-response transcription factors such as NFκB turn on hundreds of genes and must have a mechanism for rapid cessation of transcriptional activation. We recently showed that the inhibitor of NFκB signaling, IκBα, dramatically accelerates the dissociation of NFκB from transcription sites, a process we have called "stripping." To test the role of the IκBα C-terminal PEST (rich in proline, glutamic acid, serine, and threonine residues) sequence in NFκB stripping, a mutant IκBα was generated in which five acidic PEST residues were mutated to their neutral analogs. This IκBα(5xPEST) mutant was impaired in stripping NFκB from DNA and formed a more stable intermediate ternary complex than that formed from IκBα(WT) because DNA dissociated more slowly. NMR and amide hydrogen-deuterium exchange mass spectrometry showed that the IκBα(5xPEST) appears to be "caught in the act of stripping" because it is not yet completely in the folded and NFκB-bound state. When the mutant was introduced into cells, the rate of postinduction IκBα-mediated export of NFκB from the nucleus decreased markedly.


Assuntos
DNA/metabolismo , Inibidor de NF-kappaB alfa/metabolismo , NF-kappa B/metabolismo , Transdução de Sinais/genética , Ativação Transcricional , Animais , Núcleo Celular/metabolismo , Células Cultivadas , DNA/genética , Fibroblastos , Imunofluorescência , Técnicas de Inativação de Genes , Humanos , Proteínas I-kappa B/genética , Camundongos , Simulação de Acoplamento Molecular , Mutação , Inibidor de NF-kappaB alfa/genética , NF-kappa B/genética , Ressonância Magnética Nuclear Biomolecular , Regiões Promotoras Genéticas , Ligação Proteica , Proteínas Proto-Oncogênicas/genética , Estresse Fisiológico/fisiologia , Fator de Transcrição RelA/genética
4.
Proc Natl Acad Sci U S A ; 113(12): E1615-24, 2016 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-26951662

RESUMO

Membrane protein biogenesis poses enormous challenges to cellular protein homeostasis and requires effective molecular chaperones. Compared with chaperones that promote soluble protein folding, membrane protein chaperones require tight spatiotemporal coordination of their substrate binding and release cycles. Here we define the chaperone cycle for cpSRP43, which protects the largest family of membrane proteins, the light harvesting chlorophyll a/b-binding proteins (LHCPs), during their delivery. Biochemical and NMR analyses demonstrate that cpSRP43 samples three distinct conformations. The stromal factor cpSRP54 drives cpSRP43 to the active state, allowing it to tightly bind substrate in the aqueous compartment. Bidentate interactions with the Alb3 translocase drive cpSRP43 to a partially inactive state, triggering selective release of LHCP's transmembrane domains in a productive unloading complex at the membrane. Our work demonstrates how the intrinsic conformational dynamics of a chaperone enables spatially coordinated substrate capture and release, which may be general to other ATP-independent chaperone systems.


Assuntos
Proteínas de Arabidopsis/química , Arabidopsis/metabolismo , Proteínas de Cloroplastos/química , Complexos de Proteínas Captadores de Luz/metabolismo , Chaperonas Moleculares/metabolismo , Partícula de Reconhecimento de Sinal/química , Sequência de Aminoácidos , Proteínas de Arabidopsis/metabolismo , Sítios de Ligação , Proteínas de Cloroplastos/metabolismo , Proteínas de Membrana/metabolismo , Modelos Moleculares , Dados de Sequência Molecular , Ressonância Magnética Nuclear Biomolecular , Ligação Proteica , Conformação Proteica , Mapeamento de Interação de Proteínas , Estrutura Terciária de Proteína , Proteínas Recombinantes de Fusão/metabolismo , Alinhamento de Sequência , Homologia de Sequência de Aminoácidos , Partícula de Reconhecimento de Sinal/metabolismo , Solubilidade , Relação Estrutura-Atividade , Proteínas das Membranas dos Tilacoides/metabolismo , Tilacoides/metabolismo
5.
PLoS Pathog ; 8(9): e1002916, 2012 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23028316

RESUMO

Filoviruses, including Marburg virus (MARV) and Ebola virus (EBOV), cause fatal hemorrhagic fever in humans and non-human primates. All filoviruses encode a unique multi-functional protein termed VP35. The C-terminal double-stranded (ds)RNA-binding domain (RBD) of VP35 has been implicated in interferon antagonism and immune evasion. Crystal structures of the VP35 RBD from two ebolaviruses have previously demonstrated that the viral protein caps the ends of dsRNA. However, it is not yet understood how the expanses of dsRNA backbone, between the ends, are masked from immune surveillance during filovirus infection. Here, we report the crystal structure of MARV VP35 RBD bound to dsRNA. In the crystal structure, molecules of dsRNA stack end-to-end to form a pseudo-continuous oligonucleotide. This oligonucleotide is continuously and completely coated along its sugar-phosphate backbone by the MARV VP35 RBD. Analysis of dsRNA binding by dot-blot and isothermal titration calorimetry reveals that multiple copies of MARV VP35 RBD can indeed bind the dsRNA sugar-phosphate backbone in a cooperative manner in solution. Further, MARV VP35 RBD can also cap the ends of the dsRNA in solution, although this arrangement was not captured in crystals. Together, these studies suggest that MARV VP35 can both coat the backbone and cap the ends, and that for MARV, coating of the dsRNA backbone may be an essential mechanism by which dsRNA is masked from backbone-sensing immune surveillance molecules.


Assuntos
Evasão da Resposta Imune , Interferons/antagonistas & inibidores , Marburgvirus/química , Marburgvirus/imunologia , RNA de Cadeia Dupla/metabolismo , Proteínas Virais Reguladoras e Acessórias/química , Proteínas Virais Reguladoras e Acessórias/metabolismo , Linhagem Celular , Cristalografia por Raios X , Ebolavirus/química , Ebolavirus/genética , Ebolavirus/imunologia , Ebolavirus/metabolismo , Células HEK293 , Humanos , Marburgvirus/genética , Marburgvirus/metabolismo , Modelos Moleculares , Ligação Proteica , Estrutura Terciária de Proteína , RNA de Cadeia Dupla/química , Proteínas de Ligação a RNA/metabolismo
6.
J Mol Biol ; 436(16): 168673, 2024 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-38909653

RESUMO

The aggregation pathway of transthyretin (TTR) proceeds through rate-limiting dissociation of the tetramer (a dimer of dimers) and partial misfolding of the resulting monomer, which assembles into amyloid structures through a downhill polymerization mechanism. The structural features of the aggregation-prone monomeric intermediate are poorly understood. NMR relaxation dispersion offers a unique opportunity to characterize amyloidogenic intermediates when they exchange on favorable timescales with NMR-visible ground states. Here we use NMR to characterize the structure and conformational dynamics of the monomeric F87E mutant of human TTR. Chemical shifts derived from analysis of multinuclear relaxation dispersion data provide insights into the structure of a low-lying excited state that exchanges with the ground state of the F87E monomer at a rate of 3800 s-1. Disruption of the subunit interfaces of the TTR tetramer leads to destabilization of edge strands in both ß-sheets of the F87E monomer. Conformational fluctuations are propagated through the entire hydrogen bonding network of the DAGH ß-sheet, from the inner ß-strand H, which forms the strong dimer-dimer interface in the TTR tetramer, to outer strand D which is unfolded in TTR fibrils. Fluctuations are also propagated from the AB loop in the weak dimer-dimer interface to the EF helix, which undergoes structural remodeling in fibrils. The conformational fluctuations in both regions are enhanced at acidic pH where amyloid formation is most favorable. The relaxation dispersion data provide insights into the conformational dynamics of the amyloidogenic state of monomeric TTR that predispose it for structural remodeling and progression to amyloid fibrils.

7.
Proc Natl Acad Sci U S A ; 106(27): 11067-72, 2009 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-19541614

RESUMO

Beta-turns are common conformations that enable proteins to adopt globular structures, and their formation is often rate limiting for folding. Beta-turn mimics, molecules that replace the i + 1 and i + 2 amino acid residues of a beta-turn, are envisioned to act as folding nucleators by preorganizing the pendant polypeptide chains, thereby lowering the activation barrier for beta-sheet formation. However, the crucial kinetic experiments to demonstrate that beta-turn mimics can act as strong nucleators in the context of a cooperatively folding protein have not been reported. We have incorporated 6 beta-turn mimics simulating varied beta-turn types in place of 2 residues in an engineered beta-turn 1 or beta-bulge turn 1 of the Pin 1 WW domain, a three-stranded beta-sheet protein. We present 2 lines of kinetic evidence that the inclusion of beta-turn mimics alters beta-sheet folding rates, enabling us to classify beta-turn mimics into 3 categories: those that are weak nucleators but permit Pin WW folding, native-like nucleators, and strong nucleators. Strong nucleators accelerate folding relative to WW domains incorporating all alpha-amino acid sequences. A solution NMR structure reveals that the native Pin WW beta-sheet structure is retained upon incorporating a strong E-olefin nucleator. These beta-turn mimics can now be used to interrogate protein folding transition state structures and the 2 kinetic analyses presented can be used to assess the nucleation capacity of other beta-turn mimics.


Assuntos
Mimetismo Molecular , Peptidilprolil Isomerase/química , Sequência de Aminoácidos , Humanos , Cinética , Dados de Sequência Molecular , Proteínas Mutantes , Peptidilprolil Isomerase de Interação com NIMA , Estabilidade Proteica , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , Soluções , Termodinâmica
8.
BMC Evol Biol ; 10: 226, 2010 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-20653954

RESUMO

BACKGROUND: Water Rails (Rallus aquaticus) inhabit fragmented freshwater wetlands across their Palearctic distribution. Disjunct populations are now thought to be morphologically similar over their vast geographic range, though four subspecies had been recognized previously. The fossil record suggests that Water Rails (R. aquaticus) were already spread across the Palearctic by the Pleistocene approximately 2 million years ago, and the oldest fossil remains thought to be closely related to the common ancestor of water rails date from the Pliocene. RESULTS: To investigate population structure in Water Rails at the genetic level we sequenced three independent loci: 686 base pairs (bp) of the mitochondrial DNA COI barcode; 618 bp of the intron ADH5; and 746 bp of the exon PTPN12. Phylogeographic analysis revealed that Water Rails breeding in eastern Asia (R. a. indicus, also known as the Brown-cheeked Rail) are strongly differentiated from the Water Rails in Western and Middle Asia and Europe (R. a. aquaticus and R. a. korejewi). The Kimura 3-parameter plus Gamma COI genetic distance between these two geographic groups was > 3%, and they differed by 18 diagnostic substitutions commensurate with differences between recently diverged sister species of birds. In spite of the low number of variable sites, the two nuclear loci supported this split. We estimated the split of the Brown-cheeked Rail and the Water Rail to have occurred approximately 534,000 years ago (95% CI 275,000-990,000 years ago). Fragmentation of the widespread ancestral population and eventual speciation of water rails is likely attributable to vicariance by a barrier formed by glacial cycles, continuous uplift of the Tibetan Plateau and increased sedimentation in deserts in southern Asia that originated in the Miocene. CONCLUSIONS: Water Rails from East Asia were genetically differentiated from the ones breeding in Europe and Western to Middle Asia. Most of the genetic signal was from mitochondrial COI, and was corroborated by polymorphic sites in the two nuclear loci we employed. The split between these two lineages was estimated to occur in the Middle Pleistocene, when populations were isolated in disjunct wetlands with little or no gene flow. Independent evidence from differences in morphology and vocalizations in concert with genetic differentiation and a long history of isolation support recognition of the Brown-cheeked Rail breeding in East Asia as a separate species, R. indicus. The use of several independent loci is invaluable in inferring species trees from gene trees and in recognizing species limits.


Assuntos
Aves/classificação , Aves/genética , Evolução Molecular , Filogenia , Animais , Ásia , Composição de Bases , Teorema de Bayes , DNA Mitocondrial/genética , Europa (Continente) , Fluxo Gênico , Variação Genética , Genética Populacional , Geografia , Haplótipos , Modelos Genéticos , Polimorfismo de Nucleotídeo Único , Análise de Sequência de DNA , Especificidade da Espécie
9.
J Mol Biol ; 432(24): 166708, 2020 12 04.
Artigo em Inglês | MEDLINE | ID: mdl-33188783

RESUMO

The 43 kDa subunit of the chloroplast signal recognition particle, cpSRP43, is an ATP-independent chaperone essential for the biogenesis of the light harvesting chlorophyll-binding proteins (LHCP), the most abundant membrane protein family on earth. cpSRP43 is activated by a stromal factor, cpSRP54, to more effectively capture and solubilize LHCPs. The molecular mechanism underlying this chaperone activation is unclear. Here, a combination of hydrogen-deuterium exchange, electron paramagnetic resonance, and NMR spectroscopy experiments reveal that a disorder-to-order transition of the ankyrin repeat motifs in the substrate binding domain of cpSRP43 drives its activation. An analogous coil-to-helix transition in the bridging helix, which connects the ankyrin repeat motifs to the cpSRP54 binding site in the second chromodomain, mediates long-range allosteric communication of cpSRP43 with its activating binding partner. Our results provide a molecular model to explain how the conformational dynamics of cpSRP43 enables regulation of its chaperone activity and suggest a general mechanism by which ATP-independent chaperones with cooperatively folding domains can be regulated.


Assuntos
Trifosfato de Adenosina/genética , Proteínas de Arabidopsis/genética , Arabidopsis/genética , Proteínas de Membrana/genética , Partícula de Reconhecimento de Sinal/genética , Sequência de Aminoácidos/genética , Proteínas de Arabidopsis/ultraestrutura , Sítios de Ligação , Cloroplastos/genética , Complexos de Proteínas Captadores de Luz/genética , Modelos Moleculares , Chaperonas Moleculares/genética , Ligação Proteica/genética , Conformação Proteica , Dobramento de Proteína , Partícula de Reconhecimento de Sinal/ultraestrutura
10.
Protein Sci ; 28(12): 2064-2072, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31587407

RESUMO

The nuclear factor of kappa light polypeptide gene enhancer in B-cells (NFκB) transcription factors play a critical role in human immune response. The family includes homodimers and heterodimers of five component proteins, which mediate different transcriptional responses and bind preferentially to different DNA sequences. Crystal structures of DNA complexes show that the dimers of the Rel-homology regions are structurally very similar. Differing DNA sequence preference together with structural similarity suggests that the dimers may differ in their dynamics. In this study, we present the first near-complete 15 N, 13 Cα/ß , and HN backbone resonance assignments of two dimers of the dimerization domain (DD) of the NFκB1 (p50) protein (residues 241-351): the homodimer of two p50 domains and a heterodimer of the p50 DD with the p65 DD. As expected, the two dimers behave very similarly, with chemical shift differences between them largely concentrated in the dimer interface and attributable to specific differences in the amino acid sequences of p50 and p65. A comparison of the picosecond-nanosecond dynamics of the homo- and heterodimers also shows that the environment of p50 is similar, with an overall slightly reduced correlation time for the homodimer compared to the heterodimer, consistent with its slightly smaller molecular weight. These results demonstrate that NMR spectroscopy can be used to explore subtle changes in structure and dynamics that have the potential to give insights into differences in specificity that can be exploited in the design of new therapeutic agents.


Assuntos
Subunidade p50 de NF-kappa B/metabolismo , Fator de Transcrição RelA/metabolismo , Dimerização , Humanos , Modelos Moleculares , Subunidade p50 de NF-kappa B/química , Fator de Transcrição RelA/química
11.
Protein Sci ; 17(2): 313-21, 2008 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-18227434

RESUMO

We present a detailed investigation of unfolded and partially folded states of a mutant apomyoglobin (apoMb) where the distal histidine has been replaced by phenylalanine (H64F). Previous studies have shown that substitution of His64, located in the E helix of the native protein, stabilizes the equilibrium molten globule and native states and leads to an increase in folding rate and a change in the folding pathway. Analysis of changes in chemical shift and in backbone flexibility, detected via [1H]-15N heteronuclear nuclear Overhauser effect measurements, indicates that the phenylalanine substitution has only minor effects on the conformational ensemble in the acid- and urea-unfolded states, but has a substantial effect on the structure, dynamics, and stability of the equilibrium molten globule intermediate formed near pH 4. In H64F apomyoglobin, additional regions of the polypeptide chain are recruited into the compact core of the molten globule. Since the phenylalanine substitution has negligible effect on the unfolded ensemble, its influence on folding rate and stability comes entirely from interactions within the compact folded or partly folded states. Replacement of His64 with Phe leads to favorable hydrophobic packing between the helix E region and the molten globule core and leads to stabilization of helix E secondary structure and overall thermodynamic stabilization of the molten globule. The secondary structure of the equilibrium molten globule parallels that of the burst phase kinetic intermediate; both intermediates contain significant helical structure in regions of the polypeptide that comprise the A, B, E, G, and H helices of the fully folded protein.


Assuntos
Apoproteínas/química , Mioglobina/química , Dobramento de Proteína , Substituição de Aminoácidos , Concentração de Íons de Hidrogênio , Proteínas Mutantes/química , Conformação Proteica , Estrutura Secundária de Proteína
12.
Biochemistry ; 47(37): 9900-10, 2008 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-18710262

RESUMO

Human amylin, or islet amyloid polypeptide, is a peptide cosecreted with insulin by the beta cells of the pancreatic islets of Langerhans. The 37-residue, C-terminally amidated human amylin peptide derives from a proprotein that undergoes disulfide bond formation in the endoplasmic reticulum and is then subjected to four enzymatic processing events in the immature secretory granule. Human amylin forms both intracellular and extracellular amyloid deposits in the pancreas of most type II diabetic subjects, likely reflecting compromised secretory cell function. In addition, amylin processing intermediates, postulated to initiate intracellular amyloidogenesis, have been reported as components of intracellular amyloid in beta cells. We investigated the amyloidogenicity of amylin and its processing intermediates in vitro. Chaotrope-denatured amylin and amylin processing intermediates were subjected to size exclusion chromatography, affording high concentrations of monomeric peptides. NMR studies reveal that human amylin samples helical conformations. Under conditions mimicking the immature secretory granule (37 degrees C, pH 6), amylin forms amyloid aggregates more rapidly than its processing intermediates, and more rapidly than its reduced counterparts. Our studies also show that the amyloidogenicity of amylin and its processing intermediates is negatively correlated with net charge and charge at the C-terminus. Although our conditions may not precisely reflect those of amyloidogenesis in vivo, the lower amyloidogenicity of the processing intermediates relative to amylin suggests their presence in intracellular amyloid deposits in the increasingly stressed beta cells of diabetic subjects may be a consequence of general defects in protein homeostasis control known to occur in diabetes rather than serving as amyloid initiators.


Assuntos
Amiloide/química , Sequência de Aminoácidos , Amiloide/síntese química , Amiloide/metabolismo , Cromatografia em Gel , Dicroísmo Circular , Humanos , Polipeptídeo Amiloide das Ilhotas Pancreáticas , Cinética , Dados de Sequência Molecular , Ressonância Magnética Nuclear Biomolecular
13.
J Mol Biol ; 328(5): 1161-71, 2003 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-12729749

RESUMO

At low ionic strength, apoplastocyanin forms an unfolded state under non-denaturing conditions. The refolding of this state is sufficiently slow to allow real-time NMR experiments to be performed. Folding of apoplastocyanin, initiated by the addition of salt and followed by real-time 2D 1H-15N heteronuclear single quantum coherence (HSQC) spectroscopy, is highly cooperative. A concomitant increase in the intensity of both sequential and long-range nuclear Overhauser effects (NOEs) between backbone amide protons in successive acquisitions of 1H-15N HSQC-NOESY-HSQC spectra provides the first direct observation of the development of structure-specific NOEs as a protein folds. Our results show that the local and long-range interactions in the native apoplastocyanin are formed simultaneously, consistent with highly cooperative formation of the native structure.


Assuntos
Apoproteínas/química , Plastocianina/química , Técnicas In Vitro , Cinética , Modelos Moleculares , Ressonância Magnética Nuclear Biomolecular , Dobramento de Proteína , Estrutura Secundária de Proteína , Proteínas Recombinantes/química
14.
J Mol Biol ; 340(5): 1131-42, 2004 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-15236972

RESUMO

The conformational propensities of unfolded states of apomyoglobin have been investigated by measurement of residual dipolar couplings between (15)N and (1)H in backbone amide groups. Weak alignment of apomyoglobin in acid and urea-unfolded states was induced with both stretched and compressed polyacrylamide gels. In 8 M urea solution at pH 2.3, conditions under which apomyoglobin contains no detectable secondary or tertiary structure, significant residual dipolar couplings of uniform sign were observed for all residues. At pH 2.3 in the absence of urea, a change in the magnitude and/or sign of the residual dipolar couplings occurs in local regions of the polypeptide where there is a high propensity for helical secondary structure. These results are interpreted on the basis of the statistical properties of the unfolded polypeptide chain, viewed as a polymer of statistical segments. For a folded protein, the magnitude and sign of the residual dipolar couplings depend on the orientation of each bond vector relative to the alignment tensor of the entire molecule, which reorients as a single entity. For unfolded proteins, there is no global alignment tensor; instead, residual dipolar couplings are attributed to alignment of the statistical segments or of transient elements of secondary structure. For apomyoglobin in 8 M urea, the backbone is highly extended, with phi and psi dihedral angles favoring the beta or P(II) regions. Each statistical segment has a highly anisotropic shape, with the N-H bond vectors approximately perpendicular to the long axis, and becomes weakly aligned in the anisotropic environment of the strained acrylamide gels. Local regions of enhanced flexibility or chain compaction are characterized by a decrease in the magnitude of the residual dipolar couplings. The formation of a small population of helical structure in the acid-denatured state of apomyoglobin leads to a change in sign of the residual dipolar couplings in local regions of the polypeptide; the population of helix estimated from the residual dipolar couplings is in excellent agreement with that determined from chemical shifts. The alignment model described here for apomyoglobin can also explain the pattern of residual dipolar couplings reported previously for denatured states of staphylococcal nuclease and other proteins. In conjunction with other NMR experiments, residual dipolar couplings can provide valuable insights into the dynamic conformational propensities of unfolded and partly folded states of proteins and thereby help to chart the upper reaches of the folding landscape.


Assuntos
Apoproteínas/química , Apoproteínas/metabolismo , Mioglobina/química , Mioglobina/metabolismo , Resinas Acrílicas/química , Sequência de Aminoácidos , Eletroforese em Gel de Poliacrilamida , Concentração de Íons de Hidrogênio , Modelos Moleculares , Ressonância Magnética Nuclear Biomolecular , Ligação Proteica , Desnaturação Proteica , Dobramento de Proteína , Estrutura Terciária de Proteína
15.
Protein Sci ; 12(7): 1386-94, 2003 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-12824485

RESUMO

Binding of the product inhibitor p-nitrophenol to the monoclonal esterolytic antibody NPN43C9 has been investigated by performing NMR spectroscopy of the heterodimeric variable-domain fragment (Fv) of the antibody in the presence and absence of inhibitor. Structural information from changes in chemical shift upon binding has been related to the changes in local dynamics in the active site of the catalytic antibody using NMR relaxation measurements. Significant changes in the chemical shifts of the backbone resonances upon binding extend beyond the immediate vicinity of the antigen binding site into the interface between the two associated polypeptides that form the Fv heterodimer, a possible indication that the binding of ligand causes a change in the relative orientations of the component light (V(L)) and heavy (V(H)) chain polypeptides. Significant differences in backbone dynamics were observed between the free Fv and the complex with p-nitrophenol. A number of resonances, including almost all of the third hypervariable loop of the light chain (L3), were greatly broadened in the free form of the protein. Other residues in the antigen-binding site showed less broadening of resonances, but still required exchange terms (R(ex)) in the model-free dynamics analysis, consistent with motion on a slow timescale in the active site region of the free Fv. Binding of p-nitrophenol caused these resonances to sharpen, but some R(ex) terms are still required in the analysis of the backbone dynamics. We conclude that the slow timescale motions in the antigen-binding site are very different in the bound and free forms of the Fv, presumably due to the damping of large-amplitude motions by the bound inhibitor.


Assuntos
Anticorpos Catalíticos/química , Sítios de Ligação de Anticorpos , Fragmentos de Imunoglobulinas/química , Nitrofenóis/química , Amidas/química , Anisotropia , Catálise , Difusão , Fragmentos de Imunoglobulinas/isolamento & purificação , Cadeias Pesadas de Imunoglobulinas/química , Cadeias Leves de Imunoglobulina/química , Ligantes , Espectroscopia de Ressonância Magnética , Modelos Moleculares , Nitrofenóis/antagonistas & inibidores , Conformação Proteica
16.
J Magn Reson ; 163(2): 360-8, 2003 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-12914853

RESUMO

We provide quantitative signal to noise data and feasibility study at 900 MHz for 1H-15N-13C triple resonance backbone assignment pulse sequences obtained from a medium sized 2H, 13C, 15N labeled protein slowed down in glycerol-water solution to mimic relaxation and spectroscopic properties of a much larger protein system with macromolecular tumbling correlation time of 52 and 80 ns, respectively, at 296 and 283 K (corresponding to molecular weights of 130 and 250 kDa). Comparisons of several different schemes for transferring magnetization from proton to nitrogen and back to proton confirms Yang and Kay's 1999 prediction that avoiding the unfavorable relaxation properties of 1H-15N multiple quantum coherence in the TROSY phase cycle of the final 15N-1H transfer before acquisition is crucial for maximal sensitivity from these very large molecular weight systems. We also show results which confirm some predictions regarding the superiority of TROSY at 900 MHz vs. 800 MHz especially as the molecular weights become very large.


Assuntos
Antígeno-1 Associado à Função Linfocitária/química , Espectroscopia de Ressonância Magnética/métodos , Isótopos de Carbono , Glicerol/química , Humanos , Substâncias Macromoleculares , Peso Molecular , Movimento (Física) , Isótopos de Nitrogênio , Prótons , Ondas de Rádio , Reprodutibilidade dos Testes , Sensibilidade e Especificidade , Água/química
17.
J Magn Reson ; 246: 31-5, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-25063954

RESUMO

Non-uniform sampling (NUS) in NMR spectroscopy is a recognized and powerful tool to minimize acquisition time. Recent advances in reconstruction methodologies are paving the way for the use of NUS in quantitative applications, where accurate measurement of peak intensities is crucial. The presence or absence of NUS artifacts in reconstructed spectra ultimately determines the success of NUS in quantitative NMR. The quality of reconstructed spectra from NUS acquired data is dependent upon the quality of the sampling scheme. Here we demonstrate that the best performing sampling schemes make up a very small percentage of the total randomly generated schemes. A scoring method is found to accurately predict the quantitative similarity between reconstructed NUS spectra and those of fully sampled spectra. We present an easy-to-use protocol to batch generate and rank optimal Poisson-gap NUS schedules for use with 2D NMR with minimized noise and accurate signal reproduction, without the need for the creation of synthetic spectra.


Assuntos
Algoritmos , Artefatos , Interpretação Estatística de Dados , Espectroscopia de Ressonância Magnética/métodos , Modelos Estatísticos , Simulação por Computador , Reprodutibilidade dos Testes , Tamanho da Amostra , Sensibilidade e Especificidade
18.
Nat Struct Mol Biol ; 20(11): 1243-9, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-24077226

RESUMO

Molecular evolution is driven by mutations, which may affect the fitness of an organism and are then subject to natural selection or genetic drift. Analysis of primary protein sequences and tertiary structures has yielded valuable insights into the evolution of protein function, but little is known about the evolution of functional mechanisms, protein dynamics and conformational plasticity essential for activity. We characterized the atomic-level motions across divergent members of the dihydrofolate reductase (DHFR) family. Despite structural similarity, Escherichia coli and human DHFRs use different dynamic mechanisms to perform the same function, and human DHFR cannot complement DHFR-deficient E. coli cells. Identification of the primary-sequence determinants of flexibility in DHFRs from several species allowed us to propose a likely scenario for the evolution of functionally important DHFR dynamics following a pattern of divergent evolution that is tuned by cellular environment.


Assuntos
Evolução Molecular , Tetra-Hidrofolato Desidrogenase/química , Tetra-Hidrofolato Desidrogenase/genética , Sequência de Aminoácidos , Cristalografia por Raios X , Escherichia coli/enzimologia , Teste de Complementação Genética , Deriva Genética , Humanos , Modelos Moleculares , Simulação de Dinâmica Molecular , Dados de Sequência Molecular , Mutação , Conformação Proteica , Seleção Genética , Alinhamento de Sequência
19.
J Mol Biol ; 405(3): 754-64, 2011 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-21094161

RESUMO

The nuclear localization signal (NLS) polypeptide of RelA, the canonical nuclear factor-κB family member, is responsible for regulating the nuclear localization of RelA-containing nuclear factor-κB dimers. The RelA NLS polypeptide also plays a crucial role in mediating the high affinity and specificity of the interaction of RelA-containing dimers with the inhibitor IκBα, forming two helical motifs according to the published X-ray crystal structure. In order to define the nature of the interaction between the RelA NLS and IκBα under solution conditions, we conducted NMR and isothermal titration calorimetry studies using a truncated form of IκBα containing residues 67-206 and a peptide spanning residues 293-321 of RelA. The NLS peptide, although largely unfolded, has a weak tendency toward helical structure when free in solution. Upon addition of the labeled peptide to unlabeled IκBα, the resonance dispersion in the NMR spectrum is significantly greater, providing definitive evidence that the RelA NLS polypeptide folds upon binding IκBα. Isothermal titration calorimetry studies of single-point mutants reveal that residue F309, which is located in the middle of the more C-terminal of the two helices (helix 4) in the IκBα-bound RelA NLS polypeptide, is critical for the binding of the RelA NLS polypeptide to IκBα. These results help to explain the role of helix 4 in mediating the high affinity of RelA for IκBα.


Assuntos
Núcleo Celular/metabolismo , Proteínas I-kappa B/química , Sinais de Localização Nuclear/química , Fator de Transcrição RelA/química , Motivos de Aminoácidos , Sequência de Aminoácidos , Animais , Humanos , Proteínas I-kappa B/metabolismo , Modelos Moleculares , Dados de Sequência Molecular , Inibidor de NF-kappaB alfa , Sinais de Localização Nuclear/metabolismo , Ligação Proteica , Dobramento de Proteína , Multimerização Proteica , Estrutura Secundária de Proteína , Fator de Transcrição RelA/metabolismo
20.
J Biomol NMR ; 40(1): 23-30, 2008 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-18043871

RESUMO

NMR measurements can give important information on solution structure, without the necessity for a full-scale solution structure determination. The C-terminal protein binding domain of the ribosome-associated chaperone protein trigger factor is composed of non-contiguous parts of the polypeptide chain, with an interpolated prolyl isomerase domain. A construct of the C-terminal domain of Escherichia coli trigger factor containing residues 113-149 and 247-432, joined by a Gly-Ser-Gly-Ser linker, is well folded and gives excellent NMR spectra in solution. We have used NMR measurements on this construct, and on a longer construct that includes the prolyl isomerase domain, to distinguish between two possible structures for the C-terminal domain of trigger factor, and to assess the behavior of the trigger factor C-terminal domain in solution. Two X-ray crystal structures, of intact trigger factor from E. coli (Ferbitz et al., Nature 431:590-596, 2004), and of a truncated trigger factor from Vibrio cholerae (Ludlam et al., Proc Natl Acad Sci USA 101:13436-13441, 2004) showed significant differences in the structure of the C-terminal domain, such that the two structures could not be superimposed. We show using NMR chemical shifts and long range nuclear Overhauser effects that the secondary and tertiary structure of the E. coli C-terminal domain in solution is consistent with the crystal structure of the E. coli trigger factor and not with the V. cholerae protein. Given the similarity of the amino acid sequences of the E. coli and V. cholerae proteins, it appears likely that the structure of the V. cholerae protein has been distorted as a result of truncation of a 44-amino acid segment at the C-terminus. Analysis of residual dipolar coupling measurements shows that the overall topology of the solution structure is completely inconsistent with both structures. Dynamics analysis of the C-terminal domain using T1, T2 and heteronuclear NOE parameters show that the protein is overall rather flexible. These results indicate that the structure of this domain in solution resembles the X-ray crystal structure of the E. coli protein in secondary structure and at least some tertiary contacts, but that the overall topology differs in solution, probably due to structural fluctuation.


Assuntos
Proteínas de Escherichia coli/química , Peptidilprolil Isomerase/química , Sequência de Aminoácidos , Escherichia coli/metabolismo , Espectroscopia de Ressonância Magnética , Modelos Moleculares , Dados de Sequência Molecular , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , Soluções
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA