Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
1.
Plant J ; 106(5): 1387-1400, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33735457

RESUMO

ATP is secreted to the extracellular matrix, where it activates plasma membrane receptors for controlling plant growth and stress-adaptive processes. DOES NOT RESPOND TO NUCLEOTIDES 1 (DORN1), was the first plant ATP receptor to be identified but key downstream proteins remain sought after. Here, we identified 120 proteins secreted by Arabidopsis cell cultures and screened them for putative stress-responsive proteins using ATP-affinity purification. We report three Arabidopsis proteins isolated by ATP-affinity: PEROXIDASE 52, SUBTILASE-LIKE SERINE PROTEASE 1.7 and PHOSPHOLIPASE C-LIKE 1. In wild-type Arabidopsis, the expression of genes encoding all three proteins responded to fumonisin B1, a cell death-activating mycotoxin. The expression of PEROXIDASE 52 and PHOSPHOLIPASE C-LIKE 1 was altered in fumonisin B1-resistant salicylic acid induction-deficient (sid2) mutants. Exposure to fumonisin B1 suppressed PHOSPHOLIPASE C-LIKE 1 expression in sid2 mutants, suggesting that the inactivation of this gene might provide mycotoxin tolerance. Accordingly, gene knockout mutants of PHOSPHOLIPASE C-LIKE 1 were resistant to fumonisin B1-induced death. The activation of PHOSPHOLIPASE C-LIKE 1 gene expression by exogenous ATP was not blocked in dorn1 loss-of-function mutants, indicating that DORN1 is not required. Furthermore, exogenous ATP rescued both the wild type and the dorn1 mutants from fumonisin-B1 toxicity, suggesting that different ATP receptor(s) are operational in this process. Our results point to the existence of additional plant ATP receptor(s) and provide crucial downstream targets for use in designing screens to identify these receptors. Finally, PHOSPHOLIPASE C-LIKE 1 serves as a convergence point for fumonisin B1 and extracellular ATP signalling, and functions in the Arabidopsis stress response to fumonisin B1.


Assuntos
Trifosfato de Adenosina/metabolismo , Proteínas de Arabidopsis/metabolismo , Arabidopsis/genética , Fumonisinas/metabolismo , Fosfolipases/metabolismo , Transdução de Sinais , Arabidopsis/fisiologia , Proteínas de Arabidopsis/genética , Morte Celular , Membrana Celular/metabolismo , Matriz Extracelular/metabolismo , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Mutação , Peroxidases/genética , Peroxidases/metabolismo , Fosfolipases/genética , Proteínas Quinases/genética , Proteínas Quinases/metabolismo , Proteômica , Estresse Fisiológico , Fosfolipases Tipo C/genética , Fosfolipases Tipo C/metabolismo
2.
New Phytol ; 235(4): 1531-1542, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35524456

RESUMO

Extracellular ATP is a purinergic signal with important functions in regulating plant growth and stress-adaptive responses, including programmed cell death. While signalling events proximate to receptor activation at the plasma membrane have been characterised, downstream protein targets and the mechanism of cell death activation/regulation are unknown. We designed a proteomic screen to identify ATP-responsive proteins in Arabidopsis cell cultures exposed to mycotoxin stress via fumonisin B1 (FB1) application. Arabidopsis RIBONUCLEASE 1 (RNS1) was identified by the screen, and transgenic plants overexpressing native RNS1 showed greater susceptibility to FB1, while a gene knockout rns1 mutant and antisense RNS1 transgenic plants were resistant to FB1-induced cell death. Native RNS1 complemented rns1 mutants and restored the cell death response to FB1, while a catalytically inactive version of the ribonuclease could not. The FB1 resistance of salicylic acid (SA)-depleted nahG-expressing plants was abolished by transformation with native RNS1, but not the catalytically dead version. The mechanism of FB1-induced cell death is activation of RNS1-dependent RNA cleavage, which is blocked by ATP via RNS1 suppression, or enhanced by SA through induction of RNS1 expression. Our study reveals RNS1 as a previously unknown convergence point of ATP and SA signalling in the regulation of stress-induced cell death.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Micotoxinas , Trifosfato de Adenosina/metabolismo , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Morte Celular , Regulação da Expressão Gênica de Plantas , Micotoxinas/metabolismo , Proteômica , Ribonucleases/metabolismo , Ácido Salicílico/metabolismo
3.
New Phytol ; 231(1): 152-164, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33864269

RESUMO

We have recently characterised NET2A as a pollen-specific actin-binding protein that binds F-actin at the plasma membrane of growing pollen tubes. However, the role of NET2 proteins in pollen development and fertilisation have yet to be elucidated. To further characterise the role of Arabidopsis NET2 proteins in pollen development and fertilisation, we analysed the subcellular localisation of NET2A over the course of pollen grain development and investigated the role of the NET2 family using net2 loss-of-function mutants. We observed NET2A to localise to the F-actin cytoskeleton in developing pollen grains as it underwent striking structural reorganisations at specific stages of development and during germination and pollen tube growth. Furthermore, net2 loss-of-function mutants exhibited striking morphological defects in the early stages of pollen tube growth, arising from frequent changes to pollen tube growth trajectory. We observed defects in the cortical actin cytoskeleton and actin-driven subcellular processes in net2 mutant pollen tubes. We demonstrate that NET2 proteins are essential for normal actin-driven pollen development highlighting an important role for the NET2 family members in regulating pollen tube growth during fertilisation.


Assuntos
Citoesqueleto de Actina , Proteínas de Arabidopsis , Arabidopsis/genética , Tubo Polínico/crescimento & desenvolvimento , Actinas , Arabidopsis/crescimento & desenvolvimento , Proteínas de Arabidopsis/genética , Polinização
4.
Plant J ; 89(1): 3-14, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-27595588

RESUMO

Coordination of endomembrane biogenesis with cell cycle progression is considered to be important in maintaining cell function during growth and development. We previously showed that the disruption of PHOSPHATIDIC ACID PHOSPHOHYDROLASE (PAH) activity in Arabidopsis thaliana stimulates biosynthesis of the major phospholipid phosphatidylcholine (PC) and causes expansion of the endoplasmic reticulum. Here we show that PC biosynthesis is repressed by disruption of the core cell cycle regulator CYCLIN-DEPENDENT KINASE A;1 (CDKA;1) and that this repression is reliant on PAH. Furthermore, we show that cyclin-dependent kinases (CDKs) phosphorylate PAH1 at serine 162, which reduces both its activity and membrane association. Expression of a CDK-insensitive version of PAH1 with a serine 162 to alanine substitution represses PC biosynthesis and also reduces the rate of cell division in early leaf development. Together our findings reveal a physiologically important mechanism that couples the rate of phospholipid biosynthesis and endomembrane biogenesis to cell cycle progression in Arabidopsis.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Quinases Ciclina-Dependentes/metabolismo , Fosfatidato Fosfatase/metabolismo , Fosfatidilcolinas/biossíntese , Sequência de Aminoácidos , Arabidopsis/genética , Arabidopsis/crescimento & desenvolvimento , Proteínas de Arabidopsis/genética , Ciclo Celular/genética , Quinases Ciclina-Dependentes/genética , Retículo Endoplasmático/genética , Retículo Endoplasmático/metabolismo , Isoenzimas/genética , Isoenzimas/metabolismo , Mutação , Fosfatidato Fosfatase/genética , Fosforilação , Folhas de Planta/genética , Folhas de Planta/crescimento & desenvolvimento , Folhas de Planta/metabolismo , Plantas Geneticamente Modificadas
5.
New Phytol ; 216(4): 1170-1180, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-28940405

RESUMO

During fertilization, Pollen Receptor-Like Kinases (PRKs) control pollen tube growth through the pistil in response to extracellular signals, and regulate the actin cytoskeleton at the tube apex to drive tip growth. We investigated a novel link between membrane-integral PRKs and the actin cytoskeleton, mediated through interactions between PRKs and NET2A; a pollen-specific member of the NETWORKED superfamily of actin-binding proteins. We characterize NET2A as a novel actin-associated protein that localizes to punctae at the plasma membrane of the pollen tube shank, which are stably associated with cortical longitudinal actin cables. NET2A was demonstrated to interact specifically with PRK4 and PRK5 in Nicotiana benthamiana transient expression assays, and associated at discreet foci at the shank membrane of Arabidopsis pollen tubes. Our data indicate that NET2A is recruited to the plasma membrane by PRK4 and PRK5, and that PRK kinase activity is important in facilitating its interaction with NET2A. We conclude that NET2A-PRK interactions mediate discreet sites of stable interactions between the cortical longitudinal actin cables and plasma membrane in the shank region of growing pollen tubes, which we have termed Actin-Membrane Contact Sites (AMCSs). Interactions between PRKs and NET2A implicate a role for NET2A in signal transduction to the actin cytoskeleton during fertilization.


Assuntos
Actinas/metabolismo , Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Proteínas dos Microfilamentos/metabolismo , Tubo Polínico/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Nicotiana
6.
Mol Cell Proteomics ; 14(6): 1556-68, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25862728

RESUMO

Programmed cell death is essential for plant development and stress adaptation. A detailed understanding of the signal transduction pathways that regulate plant programmed cell death requires identification of the underpinning protein networks. Here, we have used a protagonist and antagonist of programmed cell death triggered by fumonisin B1 as probes to identify key cell death regulatory proteins in Arabidopsis. Our hypothesis was that changes in the abundance of cell death-regulatory proteins induced by the protagonist should be blocked or attenuated by concurrent treatment with the antagonist. We focused on proteins present in the mobile phase of the extracellular matrix on the basis that they are important for cell-cell communications during growth and stress-adaptive responses. Salicylic acid, a plant hormone that promotes programmed cell death, and exogenous ATP, which can block fumonisin B1-induced cell death, were used to treat Arabidopsis cell suspension cultures prior to isobaric-tagged relative and absolute quantitation analysis of secreted proteins. A total of 33 proteins, whose response to salicylic acid was suppressed by ATP, were identified as putative cell death-regulatory proteins. Among these was CYCLASE1, which was selected for further analysis using reverse genetics. Plants in which CYCLASE1 gene expression was knocked out by insertion of a transfer-DNA sequence manifested dramatically increased cell death when exposed to fumonisin B1 or a bacterial pathogen that triggers the defensive hypersensitive cell death. Although pathogen inoculation altered CYCLASE1 gene expression, multiplication of bacterial pathogens was indistinguishable between wild type and CYCLASE1 knockout plants. However, remarkably severe chlorosis symptoms developed on gene knockout plants in response to inoculation with either a virulent bacterial pathogen or a disabled mutant that is incapable of causing disease in wild type plants. These results show that CYCLASE1, which had no known function hitherto, is a negative regulator of cell death and regulates pathogen-induced symptom development in Arabidopsis.


Assuntos
Proteínas de Arabidopsis/metabolismo , Morte Celular/fisiologia , Proteínas da Matriz Extracelular/metabolismo , Trifosfato de Adenosina/farmacologia , Arabidopsis/metabolismo , Arabidopsis/microbiologia , Morte Celular/efeitos dos fármacos , Fumonisinas/farmacologia , Proteômica , Pseudomonas syringae/fisiologia , Ácido Salicílico/farmacologia
7.
Proteomics ; 13(7): 1145-58, 2013 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-23436728

RESUMO

Light plays an important role in plant growth, development, and response to environmental stresses. To investigate the effects of light on the plant responses to cadmium (Cd) stress, we performed a comparative physiological and proteomic analysis of light- and dark-grown Arabidopsis cells after exposure to Cd. Treatment with different concentrations of Cd resulted in stress-related phenotypes such as cell growth inhibition and decline of cell viability. Notably, light-grown cells were more sensitive to heavy metal toxicity than dark-grown cells, and the basis for this appears to be the elevated Cd accumulation, which is twice as much under light than dark growth conditions. Protein profiles analyzed by 2D DIGE revealed a total of 162 protein spots significantly changing in abundance in response to Cd under at least one of these two growing conditions. One hundred and ten of these differentially expressed protein spots were positively identified by MS/MS and they are involved in multiple cellular responses and metabolic pathways. Sulfur metabolism-related proteins increased in relative abundance both in light- and dark-grown cells after exposure to Cd. Proteins involved in carbohydrate metabolism, redox homeostasis, and anti-oxidative processes were decreased both in light- and dark-grown cells, with the decrease being lower in the latter case. Remarkably, proteins associated with cell wall biosynthesis, protein folding, and degradation showed a light-dependent response to Cd stress, with the expression level increased in darkness but suppressed in light. The possible biological importance of these changes is discussed.


Assuntos
Arabidopsis/efeitos dos fármacos , Arabidopsis/efeitos da radiação , Cádmio/toxicidade , Luz , Proteômica/métodos , Arabidopsis/citologia , Arabidopsis/fisiologia , Proteínas de Arabidopsis/classificação , Proteínas de Arabidopsis/metabolismo , Técnicas de Cultura de Células , Morte Celular/efeitos dos fármacos , Morte Celular/efeitos da radiação , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/efeitos da radiação , Escuridão , Eletroforese em Gel Bidimensional , Malondialdeído/metabolismo , Estresse Fisiológico/efeitos dos fármacos , Estresse Fisiológico/efeitos da radiação , Suspensões
8.
Am J Hum Genet ; 86(2): 213-21, 2010 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-20096397

RESUMO

The recently described human anion channel Anoctamin (ANO) protein family comprises at least ten members, many of which have been shown to correspond to calcium-activated chloride channels. To date, the only reported human mutations in this family of genes are dominant mutations in ANO5 (TMEM16E, GDD1) in the rare skeletal disorder gnathodiaphyseal dysplasia. We have identified recessive mutations in ANO5 that result in a proximal limb-girdle muscular dystrophy (LGMD2L) in three French Canadian families and in a distal non-dysferlin Miyoshi myopathy (MMD3) in Dutch and Finnish families. These mutations consist of a splice site, one base pair duplication shared by French Canadian and Dutch cases, and two missense mutations. The splice site and the duplication mutations introduce premature-termination codons and consequently trigger nonsense-mediated mRNA decay, suggesting an underlining loss-of-function mechanism. The LGMD2L phenotype is characterized by proximal weakness, with prominent asymmetrical quadriceps femoris and biceps brachii atrophy. The MMD3 phenotype is associated with distal weakness, of calf muscles in particular. With the use of electron microscopy, multifocal sarcolemmal lesions were observed in both phenotypes. The phenotypic heterogeneity associated with ANO5 mutations is reminiscent of that observed with Dysferlin (DYSF) mutations that can cause both LGMD2B and Miyoshi myopathy (MMD1). In one MMD3-affected individual, defective membrane repair was documented on fibroblasts by membrane-resealing ability assays, as observed in dysferlinopathies. Though the function of the ANO5 protein is still unknown, its putative calcium-activated chloride channel function may lead to important insights into the role of deficient skeletal muscle membrane repair in muscular dystrophies.


Assuntos
Canais de Cloreto/genética , Genes Recessivos/genética , Distrofia Muscular do Cíngulo dos Membros/genética , Mutação/genética , Adulto , Idoso , Anoctaminas , Sequência de Bases , Canadá , Canais de Cloreto/química , Códon sem Sentido/genética , Cicloeximida/farmacologia , Análise Mutacional de DNA , Disferlina , Família , Feminino , Humanos , Masculino , Proteínas de Membrana/genética , Pessoa de Meia-Idade , Dados de Sequência Molecular , Proteínas Musculares/genética , Músculos/efeitos dos fármacos , Músculos/patologia , Músculos/ultraestrutura , Distrofia Muscular do Cíngulo dos Membros/patologia , Linhagem
9.
Plant Cell ; 22(8): 2796-811, 2010 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-20699392

RESUMO

Phospholipid biosynthesis is essential for the construction of most eukaryotic cell membranes, but how this process is regulated in plants remains poorly understood. Here, we show that in Arabidopsis thaliana, two Mg(2+)-dependent phosphatidic acid phosphohydrolases called PAH1 and PAH2 act redundantly to repress phospholipid biosynthesis at the endoplasmic reticulum (ER). Leaves from pah1 pah2 double mutants contain ~1.8-fold more phospholipid than the wild type and exhibit gross changes in ER morphology, which are consistent with massive membrane overexpansion. The net rate of incorporation of [methyl-(14)C]choline into phosphatidylcholine (PC) is ~1.8-fold greater in the double mutant, and the transcript abundance of several key genes that encode enzymes involved in phospholipid synthesis is increased. In particular, we show that PHOSPHORYLETHANOLAMINE N-METHYLTRANSFERASE1 (PEAMT1) is upregulated at the level of transcription in pah1 pah2 leaves. PEAMT catalyzes the first committed step of choline synthesis in Arabidopsis and defines a variant pathway for PC synthesis not found in yeasts or mammals. Our data suggest that PAH1/2 play a regulatory role in phospholipid synthesis that is analogous to that described in Saccharomyces cerevisiae. However, the target enzymes differ, and key components of the signal transduction pathway do not appear to be conserved.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/enzimologia , Retículo Endoplasmático/enzimologia , Fosfatidato Fosfatase/metabolismo , Fosfolipídeos/biossíntese , Sequência de Aminoácidos , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Clonagem Molecular , Dados de Sequência Molecular , Fosfatidato Fosfatase/genética , RNA de Plantas/genética , Alinhamento de Sequência
10.
Nat Commun ; 14(1): 4888, 2023 08 14.
Artigo em Inglês | MEDLINE | ID: mdl-37580356

RESUMO

In plants, exocyst subunit isoforms exhibit significant functional diversity in that they are involved in either protein secretion or autophagy, both of which are essential for plant development and survival. Although the molecular basis of autophagy is widely reported, its contribution to plant reproduction is not very clear. Here, we have identified Exo84c, a higher plant-specific Exo84 isoform, as having a unique function in modulating exocytotic compartment degradation during stigmatic tissue senescence. This process is achieved through its interaction with the ER localised VAP27 proteins, which regulate the turnover of Exo84c through the autophagy pathway. VAP27 recruits Exo84c onto the ER membrane as well as numerous ER-derived autophagosomes that are labelled with ATG8. These Exo84c/exocyst and VAP27 positive structures are accumulated in the vacuole for degradation, and this process is partially perturbed in the exo84c knock-out mutants. Interestingly, the exo84c mutant showed a prolonged effective pollination period with higher seed sets, possibly because of the delayed stigmatic senescence when Exo84c regulated autophagy is blocked. In conclusion, our studies reveal a link between the exocyst complex and the ER network in regulating the degradation of exocytosis vesicles, a process that is essential for normal papilla cell senescence and flower receptivity.


Assuntos
Arabidopsis , Arabidopsis/metabolismo , Membrana Celular/metabolismo , Plantas/metabolismo , Autofagossomos/metabolismo , Autofagia/genética , Exocitose
11.
Nat Commun ; 14(1): 5848, 2023 09 20.
Artigo em Inglês | MEDLINE | ID: mdl-37730720

RESUMO

Members of the NETWORKED (NET) family are involved in actin-membrane interactions. Here we show that two members of the NET family, NET4A and NET4B, are essential for normal guard cell actin reorganization, which is a process critical for stomatal closure in plant immunity. NET4 proteins interact with F-actin and with members of the Rab7 GTPase RABG3 family through two distinct domains, allowing for simultaneous localization to actin filaments and the tonoplast. NET4 proteins interact with GTP-bound, active RABG3 members, suggesting their function being downstream effectors. We also show that RABG3b is critical for stomatal closure induced by microbial patterns. Taken together, we conclude that the actin cytoskeletal remodelling during stomatal closure involves a molecular link between actin filaments and the tonoplast, which is mediated by the NET4-RABG3b interaction. We propose that stomatal closure to microbial patterns involves the coordinated action of immune-triggered osmotic changes and actin cytoskeletal remodelling likely driving compact vacuolar morphologies.


Assuntos
Actinas , Vacúolos , Citoesqueleto de Actina , Fenômenos Fisiológicos Celulares , Osmose
12.
Nat Commun ; 13(1): 5658, 2022 09 26.
Artigo em Inglês | MEDLINE | ID: mdl-36163196

RESUMO

ER-mitochondrial contact sites (EMCSs) are important for mitochondrial function. Here, we have identified a EMCS complex, comprising a family of uncharacterised mitochondrial outer membrane proteins, TRB1, TRB2, and the ER protein, VAP27-1. In Arabidopsis, there are three TraB family isoforms and the trb1/trb2 double mutant exhibits abnormal mitochondrial morphology, strong starch accumulation, and impaired energy metabolism, indicating that these proteins are essential for normal mitochondrial function. Moreover, TRB1 and TRB2 proteins also interact with ATG8 in order to regulate mitochondrial degradation (mitophagy). The turnover of depolarised mitochondria is significantly reduced in both trb1/trb2 and VAP27 mutants (vap27-1,3,4,6) under mitochondrial stress conditions, with an increased population of dysfunctional mitochondria present in the cytoplasm. Consequently, plant recovery after stress is significantly perturbed, suggesting that TRB1-regulated mitophagy and ER-mitochondrial interaction are two closely related processes. Taken together, we ascribe a dual role to TraB family proteins which are component of the EMCS complex in eukaryotes, regulating both interaction of the mitochondria to the ER and mitophagy.


Assuntos
Arabidopsis , Mitofagia , Arabidopsis/genética , Arabidopsis/metabolismo , Mitocôndrias/genética , Mitocôndrias/metabolismo , Membranas Mitocondriais/metabolismo , Proteínas Mitocondriais/metabolismo , Mitofagia/genética , Proteínas R-SNARE/metabolismo , Amido/metabolismo
13.
J Proteome Res ; 10(8): 3565-77, 2011 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-21657795

RESUMO

Ricinoleic acid is a feedstock for nylon-11 (N11) synthesis which is currently obtained from castor (Ricinus communis) oil. Production of this fatty acid in a temperate oilseed crop is of great commercial interest, but the highest reported level in transgenic plant oils is 30%, below the 90% observed in castor and insufficient for commercial exploitation. To identify castor oil-biosynthetic enzymes and inform strategies to improve ricinoleic acid yields, we performed MudPIT analysis on endoplasmic reticulum (ER) purified from developing castor bean endosperm. Candidate enzymes for all steps of triacylglycerol synthesis were identified among 72 proteins in the data set related to complex-lipid metabolism. Previous reported proteomic data from oilseeds had not included any membrane-bound enzyme that might incorporate ricinoleic acid into oil. Analysis of enriched ER enabled determination of which protein isoforms for these enzymes were in developing castor seed. To complement this data, quantitative RT-PCR experiments with castor seed and leaf RNA were performed for orthologues of Arabidopsis oil-synthetic enzymes, determining which were highly expressed in the seed. These data provide important information for further manipulation of ricinoleic acid content in oilseeds and peptide data for future quantification strategies.


Assuntos
Retículo Endoplasmático/metabolismo , Lipídeos/biossíntese , Ricinus/embriologia , Sementes/metabolismo , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , RNA Mensageiro/genética , Reação em Cadeia da Polimerase em Tempo Real
14.
Plant Commun ; 2(1): 100139, 2021 01 11.
Artigo em Inglês | MEDLINE | ID: mdl-33511348

RESUMO

In boreal forests, autumn frost tolerance in seedlings is a critical fitness component because it determines survival rates during regeneration. To understand the forces that drive local adaptation in this trait, we conducted freezing tests in a common garden setting for 54 Pinus sylvestris (Scots pine) populations (>5000 seedlings) collected across Scandinavia into western Russia, and genotyped 24 of these populations (>900 seedlings) at >10 000 SNPs. Variation in cold hardiness among populations, as measured by QST , was above 80% and followed a distinct cline along latitude and longitude, demonstrating significant adaptation to climate at origin. In contrast, the genetic differentiation was very weak (mean FST 0.37%). Despite even allele frequency distribution in the vast majority of SNPs among all populations, a few rare alleles appeared at very high or at fixation in marginal populations restricted to northwestern Fennoscandia. Genotype-environment associations showed that climate variables explained 2.9% of the genetic differentiation, while genotype-phenotype associations revealed a high marker-estimated heritability of frost hardiness of 0.56, but identified no major loci. Very extensive gene flow, strong local adaptation, and signals of complex demographic history across markers are interesting topics of forthcoming studies on this species to better clarify signatures of selection and demography.


Assuntos
Aclimatação/genética , Aclimatação/fisiologia , Temperatura Baixa , Variação Genética , Genótipo , Fenótipo , Pinus sylvestris/genética , Pinus sylvestris/fisiologia , Estudos de Associação Genética , Geografia , Federação Russa , Países Escandinavos e Nórdicos , Taiga
15.
Phytochemistry ; 67(23): 2541-9, 2006 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-17084870

RESUMO

Seed oil from castor bean (Ricinus communis) contains high amounts of hydroxy fatty acid rich triacylglycerols (TAGs) that can serve as raw material for production of bio-based products such as nylon, cosmetics, lubricants, foams, and surfactants. Diacylglycerol acyltransferase (DGAT) catalyses the terminal reaction in the acyl-CoA dependent Kennedy pathway of triglyceride biosynthesis. There is still some debate whether there are three or four enzymes in yeast that have DGAT activity and catalyse the synthesis of TAG but of these the DGAT2 homologue Dga1 contributes in a major way to TAG biosynthesis. Here we report on the cloning of a cDNA for DGAT2 from castor bean and prove its biological activity following expression in yeast and enzymatic assays using diricinolein as the acceptor and ricinoleoyl-CoA as the donor. Previous reports of DGAT in castor have focussed on DGAT1 which has little amino acid sequence homology to DGAT2. Expressional studies demonstrate that DGAT2 is 18-fold more highly expressed in seeds than in leaves and shows temporal specific expression during seed development. In contrast, DGAT1 shows little difference in expression in seeds versus leaves. We conclude that in castor bean DGAT2 is more likely to play a major role in seed TAG biosynthesis than DGAT1.


Assuntos
Diacilglicerol O-Aciltransferase/metabolismo , Fungos/enzimologia , Ricinus communis/enzimologia , Sementes/enzimologia , Sequência de Aminoácidos , Animais , Ricinus communis/crescimento & desenvolvimento , Diacilglicerol O-Aciltransferase/genética , Regulação Enzimológica da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Camundongos , Dados de Sequência Molecular , Filogenia , Sementes/crescimento & desenvolvimento
16.
PLoS One ; 7(2): e30100, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22319559

RESUMO

BACKGROUND: Storage triacylglycerols in castor bean seeds are enriched in the hydroxylated fatty acid ricinoleate. Extensive tissue-specific RNA-Seq transcriptome and lipid analysis will help identify components important for its biosynthesis. METHODOLOGY/FINDINGS: Storage triacylglycerols (TAGs) in the endosperm of developing castor (Ricinus communis) seeds are highly enriched in ricinoleic acid (18:1-OH). We have analysed neutral lipid fractions from other castor tissues using TLC, GLC and mass spectrometry. Cotyledons, like the endosperm, contain high levels of 18:1-OH in TAG. Pollen and male developing flowers accumulate TAG but do not contain 18:1-OH and leaves do not contain TAG or 18:1-OH. Analysis of acyl-CoAs in developing endosperm shows that ricinoleoyl-CoA is not the dominant acyl-CoA, indicating that either metabolic channelling or enzyme substrate selectivity are important in the synthesis of tri-ricinolein in this tissue. RNA-Seq transcriptomic analysis, using Illumina sequencing by synthesis technology, has been performed on mRNA isolated from two stages of developing seeds, germinating seeds, leaf and pollen-producing male flowers in order to identify differences in lipid-metabolic pathways and enzyme isoforms which could be important in the biosynthesis of TAG enriched in 18:1-OH. This study gives comprehensive coverage of gene expression in a variety of different castor tissues. The potential role of differentially expressed genes is discussed against a background of proteins identified in the endoplasmic reticulum, which is the site of TAG biosynthesis, and transgenic studies aimed at increasing the ricinoleic acid content of TAG. CONCLUSIONS/SIGNIFICANCE: Several of the genes identified in this tissue-specific whole transcriptome study have been used in transgenic plant research aimed at increasing the level of ricinoleic acid in TAG. New candidate genes have been identified which might further improve the level of ricinoleic acid in transgenic crops.


Assuntos
Vias Biossintéticas/genética , Ricinus communis/genética , Transcriptoma/genética , Triglicerídeos/biossíntese , Sequência de Bases , Ricinus communis/enzimologia , Especificidade de Órgãos , Plantas Geneticamente Modificadas , Ácidos Ricinoleicos
17.
Plant Signal Behav ; 6(4): 526-7, 2011 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-21406976

RESUMO

Phospholipids make up the bulk of most eukaryotic cell membranes, but how their synthesis is regulated remains relatively poorly understood in plants. In our article1 we provide evidence that two Mg ( 2+) -dependent phosphatidic acid phosphatase enzymes, called PAH1 and PAH2, are capable of repressing phospholipid biosynthesis at the endoplasmic reticulum in Arabidopsis thaliana. The precise mechanism of repression remains unclear and it does appear to vary in several respects from that already described in Saccharomyces cerevisiae. ( 2,3).


Assuntos
Arabidopsis/metabolismo , Lipídeos de Membrana/metabolismo , Fosfatidato Fosfatase/metabolismo , Arabidopsis/genética , Retículo Endoplasmático/metabolismo , Mutação , Fosfatidato Fosfatase/genética , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/metabolismo
18.
FEBS Lett ; 583(2): 363-8, 2009 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-19101548

RESUMO

The predicted mature portion of a putative 3-hydroxyacyl-ACP dehydratase (DH) from Arabidopsis was linked to an N-terminal poly-histidine-tag and the fusion protein expressed in Escherichia coli. Soluble dehydratase was present on induction at 25 degrees C and pure dehydratase eluted from a nickel-affinity column in 0.2-0.5M imidazole. High concentrations of imidazole were necessary to retain enzyme solubility. The dehydratase reaction is reversible and 3-hydroxybutyryl- and 2-butenoyl-ACP substrates were prepared from E. coli apo-ACP. Analysis of these suggested contamination of apo-ACP with dehydratase and an additional reverse-phase chromatographic step was required during acyl carrier protein (ACP) preparation. Activity of purified dehydratase was demonstrated by mass spectrometry using 2-butenoyl-ACP, providing the first functional experimental evidence for plant DH gene sequences.


Assuntos
Arabidopsis/enzimologia , Hidroliases/química , Hidroliases/genética , Hidroliases/isolamento & purificação , Espectrometria de Massas
19.
Plant Mol Biol ; 52(2): 273-84, 2003 May.
Artigo em Inglês | MEDLINE | ID: mdl-12856935

RESUMO

The Arabidopsis genome contains seven genes that belong to the RecQ family of ATP-dependent DNA helicases. RecQ members in Saccharomyces cerevisiae (SGS1) and man (WRN, BLM and RecQL4) are involved in DNA recombination, repair and genome stability maintenance, but little is known about the function of their plant counterparts. The Arabidopsis thaliana RecQsim gene is remarkably different from the other RecQ-like genes due to an insertion in its helicase domain. We isolated the AtRecQsim orthologues from rice and rape and established the presence of a similar insertion in their helicase domain, which suggests a plant specific function for the insert. The expression pattern of the AtRecQsim gene was compared with the other Arabidopsis RecQ-like members in different tissues and in response to stress. The transcripts of the AtRecQsim gene were found in all plant organs and its accumulation was higher in roots and seedlings, as compared to the other AtRecQ-like members. In contrast to most AtRecQ-like genes, the examined environmental cues did not have a detectable effect on the accumulation of the AtRecQsim transcripts. The budding yeast sgs1 mutant, which is known to be hypersensitive to the DNA-damaging drug MMS, was transformed with the AtRecQsim cDNA. The AtRecQsim gene suppressed the MMS hypersensitivity phenotype of the sgs1 cells. We propose that the Arabidopsis RecQsim gene, despite its unusual structure, exhibits an evolutionary conserved function.


Assuntos
Proteínas de Arabidopsis/genética , Arabidopsis/genética , DNA Helicases/genética , Saccharomyces cerevisiae/genética , Ácido Abscísico/farmacologia , Sequência de Aminoácidos , Arabidopsis/enzimologia , Proteínas de Arabidopsis/metabolismo , Brassica napus/enzimologia , Brassica napus/genética , Temperatura Baixa , DNA Helicases/metabolismo , DNA Complementar/química , DNA Complementar/genética , Regulação Enzimológica da Expressão Gênica/efeitos dos fármacos , Regulação Enzimológica da Expressão Gênica/efeitos da radiação , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Regulação da Expressão Gênica de Plantas/efeitos da radiação , Teste de Complementação Genética , Metanossulfonato de Metila/toxicidade , Dados de Sequência Molecular , Mutagênicos/toxicidade , Mutação , Oryza/enzimologia , Oryza/genética , RecQ Helicases , Saccharomyces cerevisiae/efeitos dos fármacos , Saccharomyces cerevisiae/enzimologia , Proteínas de Saccharomyces cerevisiae , Alinhamento de Sequência , Análise de Sequência de DNA , Homologia de Sequência de Aminoácidos , Cloreto de Sódio/farmacologia , Raios Ultravioleta
20.
J Biol Chem ; 277(46): 43918-23, 2002 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-12205087

RESUMO

Glycerol-3-phosphate 1-acyltransferase is a soluble chloroplast enzyme involved in glycerol-lipid biosynthesis associated with chilling resistance in plants (). Resistance is associated with higher selectivity for unsaturated acyl substrates over saturated ones. In vitro substrate selectivity assays performed under physiologically relevant conditions have been established that discriminate between selective and non-selective forms of the enzyme. A mutation, L261F, in the squash protein converts it from a non-selective enzyme into a selective one. The mutation lies within 10 A of the predicted acyl binding site and results in a higher K(m) for 16:0 acyl carrier protein (ACP). Site-directed mutagenesis was used to determine the importance of four residues, Arg(235), Arg(237), Lys(193), and His(194), implicated to be involved in binding of the phosphate group of glycerol 3-phosphate to the enzyme. All the proteins were highly homologous in structure to the wild type enzyme. Mutations in Arg(235), Arg(237), and Lys(193) resulted in inactive enzyme, while His(194) had reduced catalytic activity. The mutant proteins retained the ability to bind stoichiometric quantities of acyl-ACPs supporting the potential role of these residues in glycerol 3-phosphate binding.


Assuntos
Cucurbita/enzimologia , Glicerol-3-Fosfato O-Aciltransferase/química , Glicerol-3-Fosfato O-Aciltransferase/metabolismo , Sequência de Aminoácidos , Arginina/química , Sítios de Ligação , Domínio Catalítico , Cristalografia por Raios X , DNA Complementar/metabolismo , Histidina/química , Cinética , Leucina/metabolismo , Lisina/química , Modelos Moleculares , Dados de Sequência Molecular , Mutagênese Sítio-Dirigida , Mutação , Fenilalanina/metabolismo , Ligação Proteica , Proteínas Recombinantes/metabolismo , Análise de Sequência de DNA , Homologia de Sequência de Aminoácidos , Especificidade por Substrato , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA