Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
1.
Nat Immunol ; 23(8): 1208-1221, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35879451

RESUMO

T cell antigen-receptor (TCR) signaling controls the development, activation and survival of T cells by involving several layers and numerous mechanisms of gene regulation. N6-methyladenosine (m6A) is the most prevalent messenger RNA modification affecting splicing, translation and stability of transcripts. In the present study, we describe the Wtap protein as essential for m6A methyltransferase complex function and reveal its crucial role in TCR signaling in mouse T cells. Wtap and m6A methyltransferase functions were required for the differentiation of thymocytes, control of activation-induced death of peripheral T cells and prevention of colitis by enabling gut RORγt+ regulatory T cell function. Transcriptome and epitranscriptomic analyses reveal that m6A modification destabilizes Orai1 and Ripk1 mRNAs. Lack of post-transcriptional repression of the encoded proteins correlated with increased store-operated calcium entry activity and diminished survival of T cells with conditional genetic inactivation of Wtap. These findings uncover how m6A modification impacts on TCR signal transduction and determines activation and survival of T cells.


Assuntos
Proteínas de Ciclo Celular , Metiltransferases , Adenosina/análogos & derivados , Animais , Proteínas de Ciclo Celular/metabolismo , Metilação , Metiltransferases/genética , Camundongos , Fatores de Processamento de RNA/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Transdução de Sinais
2.
Immunity ; 47(6): 1067-1082.e12, 2017 12 19.
Artigo em Inglês | MEDLINE | ID: mdl-29246441

RESUMO

Roquin proteins preclude spontaneous T cell activation and aberrant differentiation of T follicular helper (Tfh) or T helper 17 (Th17) cells. Here we showed that deletion of Roquin-encoding alleles specifically in regulatory T (Treg) cells also caused the activation of conventional T cells. Roquin-deficient Treg cells downregulated CD25, acquired a follicular Treg (Tfr) cell phenotype, and suppressed germinal center reactions but could not protect from colitis. Roquin inhibited the PI3K-mTOR signaling pathway by upregulation of Pten through interfering with miR-17∼92 binding to an overlapping cis-element in the Pten 3' UTR, and downregulated the Foxo1-specific E3 ubiquitin ligase Itch. Loss of Roquin enhanced Akt-mTOR signaling and protein synthesis, whereas inhibition of PI3K or mTOR in Roquin-deficient T cells corrected enhanced Tfh and Th17 or reduced iTreg cell differentiation. Thereby, Roquin-mediated control of PI3K-mTOR signaling prevents autoimmunity by restraining activation and differentiation of conventional T cells and specialization of Treg cells.


Assuntos
Colite/imunologia , Fosfatidilinositol 3-Quinases/imunologia , Proteínas Repressoras/imunologia , Serina-Treonina Quinases TOR/imunologia , Ubiquitina-Proteína Ligases/imunologia , Animais , Linfócitos B/imunologia , Linfócitos B/patologia , Diferenciação Celular , Colite/genética , Colite/patologia , Modelos Animais de Doenças , Feminino , Proteína Forkhead Box O1/genética , Proteína Forkhead Box O1/imunologia , Regulação da Expressão Gênica , Centro Germinativo/imunologia , Centro Germinativo/patologia , Subunidade alfa de Receptor de Interleucina-2/genética , Subunidade alfa de Receptor de Interleucina-2/imunologia , Ativação Linfocitária , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , MicroRNAs/genética , MicroRNAs/imunologia , PTEN Fosfo-Hidrolase/genética , PTEN Fosfo-Hidrolase/imunologia , Fosfatidilinositol 3-Quinases/genética , Cultura Primária de Células , Proteínas Repressoras/deficiência , Proteínas Repressoras/genética , Transdução de Sinais , Baço/imunologia , Baço/patologia , Linfócitos T Reguladores/imunologia , Linfócitos T Reguladores/patologia , Serina-Treonina Quinases TOR/genética , Células Th17/imunologia , Células Th17/patologia , Ubiquitina-Proteína Ligases/deficiência , Ubiquitina-Proteína Ligases/genética
3.
Eur J Immunol ; 53(3): e2250090, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36404054

RESUMO

Dysregulation of the myeloid cell compartment is a feature of severe disease in hospitalized COVID-19 patients. Here, we investigated the response of circulating dendritic cell (DC) and monocyte subpopulations in SARS-CoV-2 infected outpatients with mild disease and compared it to the response of healthy individuals to yellow fever vaccine virus YF17D as a model of a well-coordinated response to viral infection. In SARS-CoV-2-infected outpatients circulating DCs were persistently reduced for several weeks whereas after YF17D vaccination DC numbers were decreased temporarily and rapidly replenished by increased proliferation until 14 days after vaccination. The majority of COVID-19 outpatients showed high expression of CD86 and PD-L1 in monocytes and DCs early on, resembling the dynamic after YF17D vaccination. In a subgroup of patients, low CD86 and high PD-L1 expression were detected in monocytes and DCs coinciding with symptoms, higher age, and lower lymphocyte counts. This phenotype was similar to that observed in severely ill COVID-19 patients, but less pronounced. Thus, prolonged reduction and dysregulated activation of blood DCs and monocytes were seen in a subgroup of symptomatic non-hospitalized COVID-19 patients while a transient coordinated activation was characteristic for the majority of patients with mild COVID-19 and the response to YF17D vaccination.


Assuntos
COVID-19 , Febre Amarela , Humanos , Monócitos , Antígeno B7-H1/metabolismo , SARS-CoV-2 , Vírus da Febre Amarela , Vacinação , Células Dendríticas
4.
Eur J Immunol ; 53(11): e2249816, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-36303448

RESUMO

This article is part of the Dendritic Cell Guidelines article series, which provides a collection of state-of-the-art protocols for the preparation, phenotype analysis by flow cytometry, generation, fluorescence microscopy, and functional characterization of mouse and human dendritic cells (DC) from lymphoid organs and various non-lymphoid tissues. This article provides protocols with top ticks and pitfalls for preparation and successful generation of mouse and human DC from different cellular sources, such as murine BM and HoxB8 cells, as well as human CD34+ cells from cord blood, BM, and peripheral blood or peripheral blood monocytes. We describe murine cDC1, cDC2, and pDC generation with Flt3L and the generation of BM-derived DC with GM-CSF. Protocols for human DC generation focus on CD34+ cell culture on OP9 cell layers for cDC1, cDC2, cDC3, and pDC subset generation and DC generation from peripheral blood monocytes (MoDC). Additional protocols include enrichment of murine DC subsets, CRISPR/Cas9 editing, and clinical grade human DC generation. While all protocols were written by experienced scientists who routinely use them in their work, this article was also peer-reviewed by leading experts and approved by all co-authors, making it an essential resource for basic and clinical DC immunologists.


Assuntos
Células Dendríticas , Monócitos , Animais , Camundongos , Humanos , Antígenos CD34 , Fenótipo , Diferenciação Celular
5.
J Immunol ; 209(11): 2227-2238, 2022 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-36426975

RESUMO

Colorectal cancer is one of the most common cancers and a major cause of mortality. Proinflammatory and antitumor immune responses play critical roles in colitis-associated colon cancer. CCL17, a chemokine of the C-C family and ligand for CCR4, is expressed by intestinal dendritic cells in the steady state and is upregulated during colitis in mouse models and inflammatory bowel disease patients. In this study, we investigated the expression pattern and functional relevance of CCL17 for colitis-associated colon tumor development using CCL17-enhanced GFP-knockin mice. CCL17 was highly expressed by dendritic cells but also upregulated in macrophages and intermediary monocytes in colon tumors induced by exposure to azoxymethane and dextran sodium sulfate. Despite a similar degree of inflammation in the colon, CCL17-deficient mice developed fewer tumors than did CCL17-competent mice. This protective effect was abrogated by cohousing, indicating a dependency on the microbiota. Changes in microbiota diversity and composition were detected in separately housed CCL17-deficient mice, and these mice were more susceptible to azoxymethane-induced early apoptosis in the colon affecting tumor initiation. Immune cell infiltration in colitis-induced colon tumors was not affected by the lack of CCL17. Taken together, our results indicate that CCL17 promotes colitis-associated tumorigenesis by influencing the composition of the intestinal microbiome and reducing apoptosis during tumor initiation.


Assuntos
Colite , Neoplasias do Colo , Microbioma Gastrointestinal , Camundongos , Animais , Carcinogênese , Transformação Celular Neoplásica , Azoximetano/toxicidade , Neoplasias do Colo/patologia , Quimiocina CCL17
6.
PLoS Pathog ; 17(10): e1009742, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34614036

RESUMO

Disease manifestations in COVID-19 range from mild to severe illness associated with a dysregulated innate immune response. Alterations in function and regeneration of dendritic cells (DCs) and monocytes may contribute to immunopathology and influence adaptive immune responses in COVID-19 patients. We analyzed circulating DC and monocyte subsets in 65 hospitalized COVID-19 patients with mild/moderate or severe disease from acute illness to recovery and in healthy controls. Persisting reduction of all DC subpopulations was accompanied by an expansion of proliferating Lineage-HLADR+ cells lacking DC markers. Increased frequency of CD163+ CD14+ cells within the recently discovered DC3 subpopulation in patients with more severe disease was associated with systemic inflammation, activated T follicular helper cells, and antibody-secreting cells. Persistent downregulation of CD86 and upregulation of programmed death-ligand 1 (PD-L1) in conventional DCs (cDC2 and DC3) and classical monocytes associated with a reduced capacity to stimulate naïve CD4+ T cells correlated with disease severity. Long-lasting depletion and functional impairment of DCs and monocytes may have consequences for susceptibility to secondary infections and therapy of COVID-19 patients.


Assuntos
COVID-19/imunologia , Células Dendríticas/imunologia , Regeneração/imunologia , SARS-CoV-2/imunologia , Adulto , Antígenos CD/imunologia , Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD4-Positivos/patologia , COVID-19/patologia , Células Dendríticas/patologia , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Monócitos/imunologia , Monócitos/patologia , Receptor de Morte Celular Programada 1/imunologia
7.
Proc Natl Acad Sci U S A ; 117(38): 23730-23741, 2020 09 22.
Artigo em Inglês | MEDLINE | ID: mdl-32879009

RESUMO

Although plasmacytoid dendritic cells (pDCs) have been shown to play a critical role in generating viral immunity and promoting tolerance to suppress antitumor immunity, whether and how pDCs cross-prime CD8 T cells in vivo remain controversial. Using a pDC-targeted vaccine model to deliver antigens specifically to pDCs, we have demonstrated that pDC-targeted vaccination led to strong cross-priming and durable CD8 T cell immunity. Surprisingly, cross-presenting pDCs required conventional DCs (cDCs) to achieve cross-priming in vivo by transferring antigens to cDCs. Taking advantage of an in vitro system where only pDCs had access to antigens, we further demonstrated that cross-presenting pDCs were unable to efficiently prime CD8 T cells by themselves, but conferred antigen-naive cDCs the capability of cross-priming CD8 T cells by transferring antigens to cDCs. Although both cDC1s and cDC2s exhibited similar efficiency in acquiring antigens from pDCs, cDC1s but not cDC2s were required for cross-priming upon pDC-targeted vaccination, suggesting that cDC1s played a critical role in pDC-mediated cross-priming independent of their function in antigen presentation. Antigen transfer from pDCs to cDCs was mediated by previously unreported pDC-derived exosomes (pDCexos), that were also produced by pDCs under various conditions. Importantly, all these pDCexos primed naive antigen-specific CD8 T cells only in the presence of bystander cDCs, similarly to cross-presenting pDCs, thus identifying pDCexo-mediated antigen transfer to cDCs as a mechanism for pDCs to achieve cross-priming. In summary, our data suggest that pDCs employ a unique mechanism of pDCexo-mediated antigen transfer to cDCs for cross-priming.


Assuntos
Linfócitos T CD8-Positivos/metabolismo , Apresentação Cruzada/imunologia , Células Dendríticas/metabolismo , Exossomos/metabolismo , Animais , Apresentação de Antígeno/imunologia , Linfócitos T CD8-Positivos/imunologia , Células Cultivadas , Células Dendríticas/imunologia , Exossomos/imunologia , Humanos , Camundongos , Camundongos Endogâmicos C57BL
8.
Immunity ; 38(5): 970-83, 2013 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-23706669

RESUMO

Mouse and human dendritic cells (DCs) are composed of functionally specialized subsets, but precise interspecies correlation is currently incomplete. Here, we showed that murine lung and gut lamina propria CD11b+ DC populations were comprised of two subsets: FLT3- and IRF4-dependent CD24(+)CD64(-) DCs and contaminating CSF-1R-dependent CD24(-)CD64(+) macrophages. Functionally, loss of CD24(+)CD11b(+) DCs abrogated CD4+ T cell-mediated interleukin-17 (IL-17) production in steady state and after Aspergillus fumigatus challenge. Human CD1c+ DCs, the equivalent of murine CD24(+)CD11b(+) DCs, also expressed IRF4, secreted IL-23, and promoted T helper 17 cell responses. Our data revealed heterogeneity in the mouse CD11b+ DC compartment and identifed mucosal tissues IRF4-expressing DCs specialized in instructing IL-17 responses in both mouse and human. The demonstration of mouse and human DC subsets specialized in driving IL-17 responses highlights the conservation of key immune functions across species and will facilitate the translation of mouse in vivo findings to advance DC-based clinical therapies.


Assuntos
Aspergillus fumigatus/imunologia , Células Dendríticas/metabolismo , Fatores Reguladores de Interferon/metabolismo , Interleucina-17/metabolismo , Células Th17/metabolismo , Animais , Antígeno CD11b/metabolismo , Antígeno CD24/metabolismo , Diferenciação Celular/imunologia , Células Dendríticas/imunologia , Humanos , Interleucina-17/biossíntese , Interleucina-23/metabolismo , Mucosa Intestinal/citologia , Mucosa Intestinal/imunologia , Macrófagos/metabolismo , Camundongos , Receptores de IgG/metabolismo , Mucosa Respiratória/citologia , Mucosa Respiratória/imunologia , Tirosina Quinase 3 Semelhante a fms/metabolismo
9.
J Immunol ; 195(12): 5787-94, 2015 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-26561545

RESUMO

IL-1R-associated kinase (IRAK) 1 is an important component of the IL-1R and TLR signaling pathways, which influence Th cell differentiation. In this study, we show that IRAK1 promotes Th17 development by mediating IL-1ß-induced upregulation of IL-23R and subsequent STAT3 phosphorylation, thus enabling sustained IL-17 production. Moreover, we show that IRAK1 signaling fosters Th1 differentiation by mediating T-bet induction and counteracts regulatory T cell generation. Cotransfer experiments revealed that Irak1-deficient CD4(+) T cells have a cell-intrinsic defect in generating Th1 and Th17 cells under inflammatory conditions in spleen, mesenteric lymph nodes, and colon tissue. Furthermore, IRAK1 expression in T cells was shown to be essential for T cell accumulation in the inflamed intestine and mesenteric lymph nodes. Transcriptome analysis ex vivo revealed that IRAK1 promotes T cell activation and induction of gut-homing molecules in a cell-intrinsic manner. Accordingly, Irak1-deficient T cells failed to upregulate surface expression of α4ß7 integrin after transfer into Rag1(-/-) mice, and their ability to induce colitis was greatly impaired. Lack of IRAK1 in recipient mice provided additional protection from colitis. Therefore, IRAK1 plays an important role in intestinal inflammation by mediating T cell activation, differentiation, and accumulation in the gut. Thus, IRAK1 is a promising novel target for therapy of inflammatory bowel diseases.


Assuntos
Colite/imunologia , Doenças Inflamatórias Intestinais/imunologia , Quinases Associadas a Receptores de Interleucina-1/metabolismo , Camundongos Endogâmicos C57BL/metabolismo , Receptores de Retorno de Linfócitos/metabolismo , Linfócitos T Reguladores/imunologia , Células Th17/imunologia , Transferência Adotiva , Animais , Diferenciação Celular , Movimento Celular/genética , Citocinas/imunologia , Citocinas/metabolismo , Inflamação/imunologia , Doenças Inflamatórias Intestinais/tratamento farmacológico , Integrinas/metabolismo , Quinases Associadas a Receptores de Interleucina-1/genética , Interleucina-17/imunologia , Intestinos/imunologia , Ativação Linfocitária , Camundongos , Camundongos Endogâmicos C57BL/genética , Camundongos Knockout , Receptores de Retorno de Linfócitos/genética , Transdução de Sinais/imunologia , Linfócitos T Reguladores/transplante , Células Th17/transplante
10.
Digestion ; 91(3): 239-47, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25823689

RESUMO

BACKGROUND: Improving health-related quality of life is a primary target of therapy for patients with inflammatory bowel disease. Physical activity has been demonstrated to improve health-related quality of life in several patient populations with chronic disease. There are very few studies investigating the effects of physical activity on health-related quality of life in inflammatory bowel disease. The primary purpose of this study is to investigate the effects of 10 weeks of moderate physical activity on health-related quality of life in patients with inflammatory bowel disease. METHODS: Thirty patients with mild to moderate IBD (Crohn's Disease Activity Index (CDAI) <220 or Rachmilewitz Index (RI) <11) were randomized 1:1 to either supervised moderate-intensity running thrice a week for 10 weeks or a control group who were not prescribed any exercise. Health-related quality of life, symptoms, and inflammation were assessed at baseline and after 10 weeks. RESULTS: Participants were 41 ± 14 years (73% female), had a body mass index of 22.8 ± 4.1 kg/m(2), and an average CDAI or RI of 66.8 ± 42.4 and 3.6 ± 3.1. No adverse events occurred during the 10-week training period. Health-related quality of life, reported as IBDQ total score, improved 19% in the intervention group and 8% in the control group. Scores for the IBDQ social sub-scale were significantly improved in the intervention group compared with controls (ΔIBDQsocial = 6.27 ± 5.46 vs. 1.87 ± 4.76, p = 0.023). CONCLUSION: Patients suffering from moderately active IBD are capable of performing symptom-free regular endurance exercise. Our data support the assumption that PA is feasible in IBD patients. PA may furthermore improve quality of life through improvements in social well-being, and may, therefore, be a useful adjunct to IBD therapy.


Assuntos
Terapia por Exercício/métodos , Nível de Saúde , Doenças Inflamatórias Intestinais/psicologia , Doenças Inflamatórias Intestinais/terapia , Qualidade de Vida , Adulto , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Estudos Prospectivos , Corrida , Índice de Gravidade de Doença , Inquéritos e Questionários , Fatores de Tempo
11.
Blood ; 119(25): 6063-71, 2012 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-22547585

RESUMO

The ontogenic relationship between the common dendritic cell (DC) progenitor (CDP), the committed conventional DC precursor (pre-cDC), and cDC subpopulations in lymphoid and nonlymphoid tissues has been largely unraveled. In contrast, the sequential steps of plasmacytoid DC (pDC) development are less defined, and it is unknown at which developmental stage and location final commitment to the pDC lineage occurs. Here we show that CCR9(-) pDCs from murine BM which enter the circulation and peripheral tissues have a common DC precursor function in vivo in the steady state, in contrast to CCR9(+) pDCs which are terminally differentiated. On adoptive transfer, the fate of CCR9(-) pDC-like precursors is governed by the tissues they enter. In the BM and liver, most transferred CCR9(-) pDC-like precursors differentiate into CCR9(+) pDCs, whereas in peripheral lymphoid organs, lung, and intestine, they additionally give rise to cDCs. CCR9(-) pDC-like precursors which are distinct from pre-cDCs can be generated from the CDP. Thus, CCR9(-) pDC-like cells are novel CDP-derived circulating DC precursors with pDC and cDC potential. Their final differentiation into functionally distinct pDCs and cDCs depends on tissue-specific factors allowing adaptation to local requirements under homeostatic conditions.


Assuntos
Diferenciação Celular , Células Dendríticas/fisiologia , Células-Tronco/fisiologia , Animais , Diferenciação Celular/genética , Diferenciação Celular/fisiologia , Movimento Celular/genética , Células Cultivadas , Células Dendríticas/metabolismo , Feminino , Perfilação da Expressão Gênica , Tecido Linfoide/citologia , Tecido Linfoide/metabolismo , Tecido Linfoide/fisiologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Mucosa/citologia , Mucosa/metabolismo , Mucosa/fisiologia , Especificidade de Órgãos/genética , Receptores CCR/metabolismo , Organismos Livres de Patógenos Específicos , Células-Tronco/metabolismo
12.
Nat Commun ; 15(1): 1696, 2024 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-38402207

RESUMO

The yellow fever 17D vaccine (YF17D) is highly effective but is frequently administered to individuals with pre-existing cross-reactive immunity, potentially impacting their immune responses. Here, we investigate the impact of pre-existing flavivirus immunity induced by the tick-borne encephalitis virus (TBEV) vaccine on the response to YF17D vaccination in 250 individuals up to 28 days post-vaccination (pv) and 22 individuals sampled one-year pv. Our findings indicate that previous TBEV vaccination does not affect the early IgM-driven neutralizing response to YF17D. However, pre-vaccination sera enhance YF17D virus infection in vitro via antibody-dependent enhancement (ADE). Following YF17D vaccination, TBEV-pre-vaccinated individuals develop high amounts of cross-reactive IgG antibodies with poor neutralizing capacity. In contrast, TBEV-unvaccinated individuals elicit a non-cross-reacting neutralizing response. Using YF17D envelope protein mutants displaying different epitopes, we identify quaternary dimeric epitopes as the primary target of neutralizing antibodies. Additionally, TBEV-pre-vaccination skews the IgG response towards the pan-flavivirus fusion loop epitope (FLE), capable of mediating ADE of dengue and Zika virus infections in vitro. Together, we propose that YF17D vaccination conceals the FLE in individuals without prior flavivirus exposure but favors a cross-reactive IgG response in TBEV-pre-vaccinated recipients directed to the FLE with potential to enhance dengue virus infection.


Assuntos
Dengue , Vírus da Encefalite Transmitidos por Carrapatos , Vacina contra Febre Amarela , Infecção por Zika virus , Zika virus , Humanos , Anticorpos Antivirais , Anticorpos Neutralizantes , Infecção por Zika virus/prevenção & controle , Epitopos , Imunoglobulina G , Dengue/prevenção & controle
13.
Gastroenterology ; 142(2): 335-45, 2012 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-22057112

RESUMO

BACKGROUND & AIMS: Priming of T cells by dendritic cells (DCs) in the intestinal mucosa and associated lymphoid tissues helps maintain mucosal tolerance but also contributes to the development of chronic intestinal inflammation. Chemokines regulate the intestinal immune response and can contribute to pathogenesis of inflammatory bowel diseases. We investigated the role of the chemokine CCL17, which is expressed by conventional DCs in the intestine and is up-regulated during colitis. METHODS: Colitis was induced by administration of dextran sodium sulfate (DSS) to mice or transfer of T cells to lymphopenic mice. Colitis activity was monitored by body weight assessment, histologic scoring, and cytokine profile analysis. The direct effects of CCL17 on DCs and the indirect effects on differentiation of T helper (Th) cells were determined in vitro and ex vivo. RESULTS: Mice that lacked CCL17 (Ccl17(E/E) mice) were protected from induction of severe colitis by DSS or T-cell transfer. Colonic mucosa and mesenteric lymph nodes from Ccl17-deficient mice produced lower levels of proinflammatory cytokines. The population of Foxp3(+) regulatory T cells (Tregs) was expanded in Ccl17(E/E) mice and required for long-term protection from colitis. CCR4 expression by transferred T cells was not required for induction of colitis, but CCR4 expression by the recipients was required. CCL17 promoted Toll-like receptor-induced secretion of interleukin-12 and interleukin-23 by DCs in an autocrine manner, promoted differentiation of Th1 and Th17 cells, and reduced induction of Foxp3(+) Treg cells. CONCLUSIONS: The chemokine CCL17 is required for induction of intestinal inflammation in mice. CCL17 has an autocrine effect on DCs that promotes production of inflammatory cytokines and activation of Th1 and Th17 cells and reduces expansion of Treg cells.


Assuntos
Quimiocina CCL17/metabolismo , Colite Ulcerativa/imunologia , Células Dendríticas/metabolismo , Linfócitos T Auxiliares-Indutores/metabolismo , Linfócitos T Reguladores/metabolismo , Animais , Células Cultivadas , Colite Ulcerativa/metabolismo , Colite Ulcerativa/patologia , Citocinas/metabolismo , Modelos Animais de Doenças , Inflamação/metabolismo , Camundongos , Camundongos Transgênicos , Receptores CCR4/metabolismo
14.
J Immunol ; 187(12): 6346-56, 2011 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-22079988

RESUMO

Plasmacytoid dendritic cells (PDCs) have been shown to present Ags and to contribute to peripheral immune tolerance and to Ag-specific adaptive immunity. However, modulation of adaptive immune responses by selective Ag targeting to PDCs with the aim of preventing autoimmunity has not been investigated. In the current study, we demonstrate that in vivo Ag delivery to murine PDCs via the specifically expressed surface molecule sialic acid binding Ig-like lectin H (Siglec-H) inhibits Th cell and Ab responses in the presence of strong immune stimulation in an Ag-specific manner. Correlating with sustained low-level MHC class II-restricted Ag presentation on PDCs, Siglec-H-mediated Ag delivery induced a hyporesponsive state in CD4(+) T cells leading to reduced expansion and Th1/Th17 cell polarization without conversion to Foxp3(+) regulatory T cells or deviation to Th2 or Tr1 cells. Siglec-H-mediated delivery of a T cell epitope derived from the autoantigen myelin oligodendrocyte glycoprotein to PDCs effectively delayed onset and reduced disease severity in myelin oligodendrocyte glycoprotein-induced experimental autoimmune encephalomyelitis by interfering with the priming phase without promoting the generation or expansion of myelin oligodendrocyte glycoprotein-specific Foxp3(+) regulatory T cells. We conclude that Ag delivery to PDCs can be harnessed to inhibit Ag-specific immune responses and prevent Th cell-dependent autoimmunity.


Assuntos
Apresentação de Antígeno/imunologia , Autoantígenos/metabolismo , Células Dendríticas/imunologia , Células Dendríticas/metabolismo , Lectinas/fisiologia , Receptores de Superfície Celular/fisiologia , Linfócitos T Auxiliares-Indutores/imunologia , Sequência de Aminoácidos , Animais , Autoanticorpos/biossíntese , Autoantígenos/imunologia , Encefalomielite Autoimune Experimental/imunologia , Encefalomielite Autoimune Experimental/metabolismo , Encefalomielite Autoimune Experimental/prevenção & controle , Epitopos de Linfócito T/imunologia , Epitopos de Linfócito T/metabolismo , Feminino , Tolerância Imunológica , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C3H , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Transgênicos , Dados de Sequência Molecular , Proteínas da Mielina/imunologia , Proteínas da Mielina/metabolismo , Glicoproteína Mielina-Oligodendrócito , Linfócitos T Auxiliares-Indutores/metabolismo
15.
J Immunol ; 186(12): 6718-25, 2011 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-21555533

RESUMO

Plasmacytoid dendritic cells (PDCs) are capable of presenting Ags to T cells in a tolerogenic or immunogenic manner depending on the formulation of the Ag and the mode of stimulation. It has not been investigated whether effective adaptive immune responses useful for vaccination can be induced by Ab-mediated Ag targeting to PDCs in vivo. In this study, we show that Ag delivered to murine PDCs via bone marrow stromal cell Ag 2 (BST2)/CD317 in combination with TLR agonists as adjuvants is specifically presented by PDCs in vivo and elicits strong cellular and humoral immune responses. These include IFN-γ production by CD4(+) T cells and high Ab titers with a broad range of IgG isotypes. In addition, BST2-mediated Ag delivery in the presence of polyinosinic-polycytidylic acid as adjuvant induces cytotoxic T lymphocytes that are functional in vivo. A single immunization with Ag-fused anti-BST2 Ab together with polyinosinic-polycytidylic acid as adjuvant is sufficient to trigger protective immunity against subsequent viral infection and tumor growth. We conclude that despite the potential tolerogenic properties of PDCs, Ag targeting to PDCs in combination with TLR agonists as adjuvants is an effective vaccination strategy.


Assuntos
Apresentação de Antígeno/imunologia , Antígenos CD/imunologia , Células Dendríticas/imunologia , Imunidade Celular/imunologia , Glicoproteínas de Membrana/imunologia , Vacinação/métodos , Animais , Anticorpos/administração & dosagem , Anticorpos/uso terapêutico , Antígenos/administração & dosagem , Antígenos/uso terapêutico , Citotoxicidade Imunológica , Camundongos , Proteínas Recombinantes de Fusão/administração & dosagem
16.
Eur J Immunol ; 41(5): 1334-43, 2011 May.
Artigo em Inglês | MEDLINE | ID: mdl-21469103

RESUMO

Exogenous and endogenous RNA ligands of Toll-like receptor (TLR) 7 which are present during viral infection or autoimmune diseases such as systemic lupus erythematosus (SLE) directly activate DCs and B cells and thus support the generation of effector T and B lymphocytes. However, the generation of effective antiviral or autoreactive adaptive immune responses requires blocking of immunosuppression by Tregs. In this study, we show that TLR7 ligands reduce the number of Tregs generated de novo from naïve murine T cells in vitro and in vivo. In the presence of TLR7-activated splenic DCs, Foxp3 was transiently induced in naïve T cells by TGF-ß but was downregulated at later time points. Neutralization experiments revealed that loss of Foxp3 after initial induction was mostly dependent on IL-6 produced in the DC-T-cell cocultures containing TLR7 ligands. Thus, under the influence of TLR7 ligands fewer Tregs were generated and these expressed lower levels of Foxp3 correlating with a reduced capacity to suppress responder T-cell proliferation. Thus, we provide evidence that TLR7 ligands affect Treg-dependent immune regulation and may thereby contribute to the development of autoimmune diseases such as systemic lupus erythematosus.


Assuntos
Células Dendríticas/imunologia , Fatores de Transcrição Forkhead/metabolismo , Glicoproteínas de Membrana/imunologia , Linfócitos T Reguladores/imunologia , Receptor 7 Toll-Like/imunologia , Fator de Crescimento Transformador beta/genética , Fator de Crescimento Transformador beta/imunologia , Animais , Diferenciação Celular , Técnicas de Cocultura , Células Dendríticas/metabolismo , Ensaio de Imunoadsorção Enzimática , Citometria de Fluxo , Fatores de Transcrição Forkhead/genética , Tolerância Imunológica , Interleucina-6/imunologia , Ligantes , Ativação Linfocitária , Glicoproteínas de Membrana/metabolismo , Camundongos , Camundongos Congênicos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , RNA/metabolismo , Linfócitos T Reguladores/citologia , Linfócitos T Reguladores/metabolismo , Receptor 7 Toll-Like/metabolismo , Receptor Toll-Like 9/metabolismo , Fator de Crescimento Transformador beta/metabolismo
17.
PLoS One ; 17(2): e0262149, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35139078

RESUMO

There is an urgent need for better diagnostic and analytical methods for vaccine research and infection control in virology. This has been highlighted by recently emerging viral epidemics and pandemics (Zika, SARS-CoV-2), and recurring viral outbreaks like the yellow fever outbreaks in Angola and the Democratic Republic of Congo (2016) and in Brazil (2016-2018). Current assays to determine neutralising activity against viral infections in sera are costly in time and equipment and suffer from high variability. Therefore, both basic infection research and diagnostic population screenings would benefit from improved methods to determine virus-neutralising activity in patient samples. Here we describe a robust, objective, and scalable Fluorescence Reduction Neutralisation Test (FluoRNT) for yellow fever virus, relying on flow cytometric detection of cells infected with a fluorescent Venus reporter containing variant of the yellow fever vaccine strain 17D (YF-17D-Venus). It accurately measures neutralising antibody titres in human serum samples within as little as 24 h. Samples from 32 vaccinees immunised with YF-17D were tested for neutralising activity by both a conventional focus reduction neutralisation test (FRNT) and FluoRNT. Both types of tests proved to be equally reliable for the detection of neutralising activity, however, FluoRNT is significantly more precise and reproducible with a greater dynamic range than conventional FRNT. The FluoRNT assay protocol is substantially faster, easier to control, and cheaper in per-assay costs. FluoRNT additionally reduces handling time minimising exposure of personnel to patient samples. FluoRNT thus brings a range of desirable features that can accelerate and standardise the measurement of neutralising anti-yellow fever virus antibodies. It could be used in applications ranging from vaccine testing to large cohort studies in systems virology and vaccinology. We also anticipate the potential to translate the methodology and analysis of FluoRNT to other flaviviruses such as West Nile, Dengue and Zika or to RNA viruses more generally.


Assuntos
Anticorpos Neutralizantes/imunologia , Febre Amarela/imunologia , Vírus da Febre Amarela/imunologia , Animais , Anticorpos Neutralizantes/sangue , Anticorpos Antivirais/sangue , Anticorpos Antivirais/imunologia , Chlorocebus aethiops , Fluorescência , Humanos , Testes de Neutralização/economia , Testes de Neutralização/métodos , Células Vero , Febre Amarela/sangue , Febre Amarela/virologia
18.
Nat Commun ; 13(1): 3456, 2022 06 16.
Artigo em Inglês | MEDLINE | ID: mdl-35705536

RESUMO

Plasmacytoid and conventional dendritic cells (pDC and cDC) are generated from progenitor cells in the bone marrow and commitment to pDCs or cDC subtypes may occur in earlier and later progenitor stages. Cells within the CD11c+MHCII-/loSiglec-H+CCR9lo DC precursor fraction of the mouse bone marrow generate both pDCs and cDCs. Here we investigate the heterogeneity and commitment of subsets in this compartment by single-cell transcriptomics and high-dimensional flow cytometry combined with cell fate analysis: Within the CD11c+MHCII-/loSiglec-H+CCR9lo DC precursor pool cells expressing high levels of Ly6D and lacking expression of transcription factor Zbtb46 contain CCR9loB220hi immediate pDC precursors and CCR9loB220lo (lo-lo) cells which still generate pDCs and cDCs in vitro and in vivo under steady state conditions. cDC-primed cells within the Ly6DhiZbtb46- lo-lo precursors rapidly upregulate Zbtb46 and pass through a Zbtb46+Ly6D+ intermediate stage before acquiring cDC phenotype after cell division. Type I IFN stimulation limits cDC and promotes pDC output from this precursor fraction by arresting cDC-primed cells in the Zbtb46+Ly6D+ stage preventing their expansion and differentiation into cDCs. Modulation of pDC versus cDC output from precursors by external factors may allow for adaptation of DC subset composition at later differentiation stages.


Assuntos
Antígenos Ly , Células Dendríticas , Lectinas Semelhantes a Imunoglobulina de Ligação ao Ácido Siálico , Animais , Antígenos Ly/genética , Antígenos Ly/metabolismo , Antígeno CD11c/metabolismo , Diferenciação Celular/genética , Células Dendríticas/metabolismo , Proteínas Ligadas por GPI/metabolismo , Camundongos , Lectinas Semelhantes a Imunoglobulina de Ligação ao Ácido Siálico/genética , Lectinas Semelhantes a Imunoglobulina de Ligação ao Ácido Siálico/metabolismo , Células-Tronco/metabolismo , Fatores de Transcrição
19.
Front Immunol ; 12: 601080, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34867933

RESUMO

COVID-19, the disease caused by SARS-CoV-2 infection, can assume a highly variable disease course, ranging from asymptomatic infection, which constitutes the majority of cases, to severe respiratory failure. This implies a diverse host immune response to SARS-CoV-2. However, the immunological underpinnings underlying these divergent disease courses remain elusive. We therefore set out to longitudinally characterize immune signatures of convalescent COVID-19 patients stratified according to their disease severity. Our unique convalescent COVID-19 cohort consists of 74 patients not confounded by comorbidities. This is the first study of which we are aware that excludes immune abrogations associated with non-SARS-CoV-2 related risk factors of disease severity. Patients were followed up and analyzed longitudinally (2, 4 and 6 weeks after infection) by high-dimensional flow cytometric profiling of peripheral blood mononuclear cells (PBMCs), in-depth serum analytics, and transcriptomics. Immune phenotypes were correlated to disease severity. Convalescence was overall associated with uniform immune signatures, but distinct immune signatures for mildly versus severely affected patients were detectable within a 2-week time window after infection.


Assuntos
COVID-19/imunologia , SARS-CoV-2/imunologia , Adulto , Idoso , Idoso de 80 Anos ou mais , Convalescença , Feminino , Humanos , Imunofenotipagem , Masculino , Pessoa de Meia-Idade , Índice de Gravidade de Doença , Adulto Jovem
20.
J Extracell Vesicles ; 10(14): e12173, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34854246

RESUMO

Infection with SARS-CoV-2 is associated with thromboinflammation, involving thrombotic and inflammatory responses, in many COVID-19 patients. In addition, immune dysfunction occurs in patients characterised by T cell exhaustion and severe lymphopenia. We investigated the distribution of phosphatidylserine (PS), a marker of dying cells, activated platelets and platelet-derived microparticles (PMP), during the clinical course of COVID-19. We found an unexpectedly high amount of blood cells loaded with PS+ PMPs for weeks after the initial COVID-19 diagnosis. Elevated frequencies of PS+ PMP+ PBMCs correlated strongly with increasing disease severity. As a marker, PS outperformed established laboratory markers for inflammation, leucocyte composition and coagulation, currently used for COVID-19 clinical scoring. PS+ PMPs preferentially bound to CD8+ T cells with gene expression signatures of proliferating effector rather than memory T cells. As PS+ PMPs carried programmed death-ligand 1 (PD-L1), they may affect T cell expansion or function. Our data provide a novel marker for disease severity and show that PS, which can trigger the blood coagulation cascade, the complement system, and inflammation, resides on activated immune cells. Therefore, PS may serve as a beacon to attract thromboinflammatory processes towards lymphocytes and cause immune dysfunction in COVID-19.


Assuntos
COVID-19/sangue , Leucócitos Mononucleares/metabolismo , Fosfatidilserinas/sangue , Adulto , Plaquetas/imunologia , Linfócitos T CD8-Positivos/imunologia , COVID-19/imunologia , COVID-19/fisiopatologia , Micropartículas Derivadas de Células/metabolismo , Citometria de Fluxo , Humanos , Glicoproteína IIb da Membrana de Plaquetas , Índice de Gravidade de Doença , Transcriptoma
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA