Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nano Lett ; 24(15): 4393-4399, 2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38569084

RESUMO

Highly tunable properties make Mn(Bi,Sb)2Te4 a rich playground for exploring the interplay between band topology and magnetism: On one end, MnBi2Te4 is an antiferromagnetic topological insulator, while the magnetic structure of MnSb2Te4 (MST) can be tuned between antiferromagnetic and ferrimagnetic. Motivated to control electronic properties through real-space magnetic textures, we use magnetic force microscopy (MFM) to image the domains of ferrimagnetic MST. We find that magnetic field tunes between stripe and bubble domain morphologies, raising the possibility of topological spin textures. Moreover, we combine in situ transport with domain manipulation and imaging to both write MST device properties and directly measure the scaling of the Hall response with the domain area. This work demonstrates measurement of the local anomalous Hall response using MFM and opens the door to reconfigurable domain-based devices in the M(B,S)T family.

2.
Nano Lett ; 20(5): 3420-3426, 2020 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-32315190

RESUMO

A novel approach to suppress bulk conductance in three-dimensional (3D) topological insulators (TIs) using short-period superlattices (SLs) of two TIs is presented. Evidence for superlattice gap enhancement (SGE) was obtained from the reduction of bulk background doping from 1.2 × 1020 cm-3 to 8.5 × 1018 cm-3 as the period of Bi2Se3/Sb2Te3 SLs is decreased from 12 nm to 5 nm. Tight binding calculations show that, in the ultrashort-period regime, a significant SGE can be achieved for the resulting SL. Ultrathin short-period SLs behave as new designer TIs with bulk bandgaps up to 60% larger than the bandgap of the constituent layer of largest bandgap, while retaining topological surface features. Evidence for gap formation was obtained from ellipsometric measurements. Analysis of the weak antilocalization cusp in low-temperature magneto-conductance confirms that the top and bottom surfaces of the SL structure behave as Dirac surfaces. This approach represents a promising platform for building truly insulating TIs.

3.
Nano Lett ; 16(6): 3409-14, 2016 06 08.
Artigo em Inglês | MEDLINE | ID: mdl-27010705

RESUMO

Topological insulators are a promising class of materials for applications in the field of spintronics. New perspectives in this field can arise from interfacing metal-organic molecules with the topological insulator spin-momentum locked surface states, which can be perturbed enhancing or suppressing spintronics-relevant properties such as spin coherence. Here we show results from an angle-resolved photemission spectroscopy (ARPES) and scanning tunnelling microscopy (STM) study of the prototypical cobalt phthalocyanine (CoPc)/Bi2Se3 interface. We demonstrate that that the hybrid interface can act on the topological protection of the surface and bury the Dirac cone below the first quintuple layer.

4.
Opt Express ; 24(7): 7398-410, 2016 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-27137030

RESUMO

We investigate the propagation of surface plasmon polaritons (SPPs) in thin films of topological insulators. Cases of single films and multilayered stacks are analyzed. The materials considered are second generation three dimensional topological insulators Bi2Se3, Bi2Te3, and Sb2Te3. Dispersion relations and propagation lengths of SPPs are estimated numerically, taking into account the variation of bulk dielectric functions of topological insulators, as well as substrate, using the Drude-Lorentz model. The key factors affecting propagation length are identified and experimental modifications for tuning the dispersion relations are proposed. The apparent discrepancy between the experimental data and previously considered theory is resolved.

5.
Nano Lett ; 15(10): 6365-70, 2015 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-26348593

RESUMO

Access to charge transport through Dirac surface states in topological insulators (TIs) can be challenging due to their intermixing with bulk states or nontopological two-dimensional electron gas (2DEG) quantum well states caused by bending of electronic bands near the surface. The band bending arises via charge transfer from surface adatoms or interfaces and, therefore, the choice of layers abutting topological surfaces is critical. Here we report molecular beam epitaxial growth of Bi2Se3/ZnxCd1-xSe superlattices that hold only one topological surface channel per TI layer. The topological nature of conducting channels is supported by π-Berry phase evident from observed Shubnikov de Haas quantum oscillations and by the associated two-dimensional (2D) weak antilocalization quantum interference correction to magnetoresistance. Both density functional theory (DFT) calculations and transport measurements suggest that a single topological Dirac cone per TI layer can be realized by asymmetric interfaces: Se-terminated ZnxCd1-xSe interface with the TI remains "electronically intact", while charge transfer occurs at the Zn-terminated interface. Our findings indicate that topological transport could be controlled by adjusting charge transfer from nontopological spacers in hybrid structures.

6.
Nat Mater ; 13(6): 580-5, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24836736

RESUMO

Topological insulators are a class of solids in which the non-trivial inverted bulk band structure gives rise to metallic surface states that are robust against impurity scattering. In three-dimensional (3D) topological insulators, however, the surface Dirac fermions intermix with the conducting bulk, thereby complicating access to the low-energy (Dirac point) charge transport or magnetic response. Here we use differential magnetometry to probe spin rotation in the 3D topological material family (Bi2Se3, Bi2Te3 and Sb2Te3). We report a paramagnetic singularity in the magnetic susceptibility at low magnetic fields that persists up to room temperature, and which we demonstrate to arise from the surfaces of the samples. The singularity is universal to the entire family, largely independent of the bulk carrier density, and consistent with the existence of electronic states near the spin-degenerate Dirac point of the 2D helical metal. The exceptional thermal stability of the signal points to an intrinsic surface cooling process, probably of thermoelectric origin, and establishes a sustainable platform for the singular field-tunable Dirac spin response.

7.
Sci Rep ; 13(1): 7381, 2023 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-37149688

RESUMO

Magnetic topological materials are promising for realizing novel quantum physical phenomena. Among these, bulk Mn-rich MnSb2Te4 is ferromagnetic due to MnSb antisites and has relatively high Curie temperatures (TC), which is attractive for technological applications. We have previously reported the growth of materials with the formula (Sb2Te3)1-x(MnSb2Te4)x, where x varies between 0 and 1. Here we report on their magnetic and transport properties. We show that the samples are divided into three groups based on the value of x (or the percent septuple layers within the crystals) and their corresponding TC values. Samples that contain x < 0.7 or x > 0.9 have a single TC value of 15-20 K and 20-30 K, respectively, while samples with 0.7 < x < 0.8 exhibit two TC values, one (TC1) at ~ 25 K and the second (TC2) reaching values above 80 K, almost twice as high as any reported value to date for these types of materials. Structural analysis shows that samples with 0.7 < x < 0.8 have large regions of only SLs, while other regions have isolated QLs embedded within the SL lattice. We propose that the SL regions give rise to a TC1 of ~ 20 to 30 K, and regions with isolated QLs are responsible for the higher TC2 values. Our results have important implications for the design of magnetic topological materials having enhanced properties.

8.
Proc Natl Acad Sci U S A ; 106(27): 10907-11, 2009 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-19549858

RESUMO

Phase-change materials are functionally important materials that can be thermally interconverted between metallic (crystalline) and semiconducting (amorphous) phases on a very short time scale. Although the interconversion appears to involve a change in local atomic coordination numbers, the electronic basis for this process is still unclear. Here, we demonstrate that in a nearly vacancy-free binary GeSb system where we can drive the phase change both thermally and, as we discover, by pressure, the transformation into the amorphous phase is electronic in origin. Correlations between conductivity, total system energy, and local atomic coordination revealed by experiments and long time ab initio simulations show that the structural reorganization into the amorphous state is driven by opening of an energy gap in the electronic density of states. The electronic driving force behind the phase change has the potential to change the interconversion paradigm in this material class.

9.
Nat Commun ; 13(1): 2308, 2022 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-35484140

RESUMO

Hydrogen, the smallest and most abundant element in nature, can be efficiently incorporated within a solid and drastically modify its electronic and structural state. In most semiconductors interstitial hydrogen binds to defects and is known to be amphoteric, namely it can act either as a donor (H+) or an acceptor (H-) of charge, nearly always counteracting the prevailing conductivity type. Here we demonstrate that hydrogenation resolves an outstanding challenge in chalcogenide classes of three-dimensional (3D) topological insulators and magnets - the control of intrinsic bulk conduction that denies access to quantum surface transport, imposing severe thickness limits on the bulk. With electrons donated by a reversible binding of H+ ions to Te(Se) chalcogens, carrier densities are reduced by over 1020cm-3, allowing tuning the Fermi level into the bulk bandgap to enter surface/edge current channels without altering carrier mobility or the bandstructure. The hydrogen-tuned topological nanostructures are stable at room temperature and tunable disregarding bulk size, opening a breadth of device platforms for harnessing emergent topological states.

10.
Proc Natl Acad Sci U S A ; 105(20): 7120-3, 2008 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-18480261

RESUMO

In high-transition-temperature (T(c)) superconductivity, charge doping is a natural tuning parameter that takes copper oxides from the antiferromagnet to the superconducting region. In the metallic state above T(c), the standard Landau's Fermi-liquid theory of metals as typified by the temperature squared (T(2)) dependence of resistivity appears to break down. Whether the origin of the non-Fermi-liquid behavior is related to physics specific to the cuprates is a fundamental question still under debate. We uncover a transformation from the non-Fermi-liquid state to a standard Fermi-liquid state driven not by doping but by magnetic field in the overdoped high-T(c) superconductor Tl(2)Ba(2)CuO(6+x). From the c-axis resistivity measured up to 45 T, we show that the Fermi-liquid features appear above a sufficiently high field that decreases linearly with temperature and lands at a quantum critical point near the superconductivity's upper critical field-with the Fermi-liquid coefficient of the T(2) dependence showing a power-law diverging behavior on the approach to the critical point. This field-induced quantum criticality bears a striking resemblance to that in quasi-two-dimensional heavy-Fermion superconductors, suggesting a common underlying spin-related physics in these superconductors with strong electron correlations.


Assuntos
Físico-Química/métodos , Teoria Quântica , Anisotropia , Temperatura Alta , Metais , Modelos Químicos , Modelos Teóricos , Oxigênio/química , Temperatura , Temperatura de Transição
11.
Nanotechnology ; 21(13): 134001, 2010 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-20208109

RESUMO

We demonstrate an energy-efficient programmable via concept using indirectly heated phase-change material. This via structure has maximum phase-change volume to achieve a minimum on resistance for high performance logic applications. Process development and material investigations for this device structure are reported. The device concept is successfully demonstrated in a standard CMOS-compatible technology capable of multiple cycles between on/off states for reconfigurable applications.

12.
Nat Commun ; 7: 10957, 2016 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-26961901

RESUMO

Topological insulators are potentially transformative quantum solids with metallic surface states which have Dirac band structure and are immune to disorder. Ubiquitous charged bulk defects, however, pull the Fermi energy into the bulk bands, denying access to surface charge transport. Here we demonstrate that irradiation with swift (∼2.5 MeV energy) electron beams allows to compensate these defects, bring the Fermi level back into the bulk gap and reach the charge neutrality point (CNP). Controlling the beam fluence, we tune bulk conductivity from p- (hole-like) to n-type (electron-like), crossing the Dirac point and back, while preserving the Dirac energy dispersion. The CNP conductance has a two-dimensional character on the order of ten conductance quanta and reveals, both in Bi2Te3 and Bi2Se3, the presence of only two quantum channels corresponding to two topological surfaces. The intrinsic quantum transport of the topological states is accessible disregarding the bulk size.


Assuntos
Bismuto/química , Elétrons , Semicondutores , Telúrio/química , Teoria Quântica , Eletricidade Estática , Propriedades de Superfície
13.
Nat Commun ; 6: 8279, 2015 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-26359207

RESUMO

Surfaces of three-dimensional topological insulators have emerged as one of the most remarkable states of condensed quantum matter where exotic electronic phases of Dirac particles should arise. Here we report on superconductivity in the topological insulator Sb2Te3 with transition to zero resistance induced through a minor tuning of growth chemistry that depletes bulk conduction channels. The depletion shifts Fermi energy towards the Dirac point as witnessed by a factor of 300 reduction of bulk carrier density and by the largest carrier mobility (≳25,000 cm(2) V(-1) s(-1)) found in any topological material. Direct evidence from transport, the unprecedentedly large diamagnetic screening, and the presence of ∼25 meV gaps detected by scanning tunnelling spectroscopy reveal the superconducting condensate to emerge first in surface puddles, with the onset of global phase coherence at ∼9 K. The rich structure of this state lends itself to manipulation via growth conditions and the material parameters such as Fermi velocity and mean free path.

14.
Sci Rep ; 4: 6203, 2014 Aug 27.
Artigo em Inglês | MEDLINE | ID: mdl-25160888

RESUMO

Discovery of new complex oxides that exhibit both magnetic and ferroelectric properties is of great interest for the design of functional magnetoelectrics, in which research is driven by the technologically exciting prospect of controlling charges by magnetic fields and spins by applied voltages, for sensors, 4-state logic, and spintronics. Motivated by the notion of a tool-kit for complex oxide design, we developed a chemical synthesis strategy for single-phase multifunctional lattices. Here, we introduce a new class of multiferroic hollandite Ba-Mn-Ti oxides not apparent in nature. BaMn3Ti4O14.25, designated BMT-134, possesses the signature channel-like hollandite structure, contains Mn(4+) and Mn(3+) in a 1:1 ratio, exhibits an antiferromagnetic phase transition (TN ~ 120 K) with a weak ferromagnetic ordering at lower temperatures, ferroelectricity, a giant dielectric constant at low frequency and a stable intrinsic dielectric constant of ~200 (1-100 MHz). With evidence of correlated antiferromagnetic and ferroelectric order, the findings point to an unexplored family of structures belonging to the hollandite supergroup with multifunctional properties, and high potential for developing new magnetoelectric materials.

15.
Nanoscale Res Lett ; 8(1): 374, 2013 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-24004499

RESUMO

Transition metal ferrites such as CoFe2O4, possessing a large magnetostriction coefficient and high Curie temperature (Tc > 600 K), are excellent candidates for creating magnetic order at the nanoscale and provide a pathway to the fabrication of uniform particle-matrix films with optimized potential for magnetoelectric coupling. Here, a series of 0-3 type nanocomposite thin films composed of ferrimagnetic cobalt ferrite nanocrystals (8 to 18 nm) and a ferroelectric/piezoelectric polymer poly(vinylidene fluoride-co-hexafluoropropene), P(VDF-HFP), were prepared by multiple spin coating and cast coating over a thickness range of 200 nm to 1.6 µm. We describe the synthesis and structural characterization of the nanocrystals and composite films by XRD, TEM, HRTEM, STEM, and SEM, as well as dielectric and magnetic properties, in order to identify evidence of cooperative interactions between the two phases. The CoFe2O4 polymer nanocomposite thin films exhibit composition-dependent effective permittivity, loss tangent, and specific saturation magnetization (Ms). An enhancement of the effective permittivity and saturation magnetization of the CoFe2O4-P(VDF-HFP) films was observed and directly compared with CoFe2O4-polyvinylpyrrolidone, a non-ferroelectric polymer-based nanocomposite prepared by the same method. The comparison provided evidence for the observation of a magnetoelectric effect in the case of CoFe2O4-P(VDF-HFP), attributed to a magnetostrictive/piezoelectric interaction. An enhancement of Ms up to +20.7% was observed at room temperature in the case of the 10 wt.% CoFe2O4-P(VDF-HFP) sample.

16.
Langmuir ; 22(18): 7631-8, 2006 Aug 29.
Artigo em Inglês | MEDLINE | ID: mdl-16922543

RESUMO

Layer-by-layer (LBL) growth of terpyridinyl ligands with a range of metal ions is reported. Monolayers of mercaptophenyl terpyridine on gold were used to initiate LBL assembly by complexing the first layer of metal ions. Tetra-2-pyridinylpyrazine was used as a linking ligand between subsequent metal ion layers. The assembly of the terpyridines with 21 different metals was evaluated using UV absorbance spectroscopy, variable-angle spectroscopic ellipsometry, and atomic force microscopy. Successful LBL growth appears to depend on the ionic radius of the metal ion. Metals that formed multilayered LBL structures were primarily limited to a small range of effective ionic radii between 66 and 73 pm. Metal ions with smaller ionic radii usually formed initial layers but seldom exhibited consistent LBL growth, while ions with radii larger than 73 nm generally did not demonstrate any evidence of LBL growth.

17.
Phys Rev Lett ; 95(1): 017001, 2005 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-16090644

RESUMO

We probe the "normal" state in electron-doped (n-type) Sm2-xCexCuO4-delta through interlayer tunneling transport in magnetic fields up to 45 T. The behavior of intrinsic high-field c-axis negative magnetoresistance (MR), which is accessed in small 30 nm-high mesa structures, is characteristic of the pseudogap state. It follows a universal correlation between the excess low-energy dissipation due to the pseudogap and its closing field Hpg and is in close correspondence with the hole-doped (p-type) Bi2Sr2CaCu2O8+y. The MR in the mesas and in the bulk crystals consistently gives a Zeeman relation between the pseudogap temperature T* and its closing field, pointing to a preeminent role of spin-singlet correlations in forming the pseudogap in cuprates, regardless of their n or p type.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA