Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 151
Filtrar
1.
EMBO Rep ; 24(8): e57306, 2023 08 03.
Artigo em Inglês | MEDLINE | ID: mdl-37334900

RESUMO

Skeletal muscle plays a key role in systemic energy homeostasis besides its contractile function, but what links these functions is poorly defined. Protein Arginine Methyl Transferase 5 (PRMT5) is a well-known oncoprotein but also expressed in healthy tissues with unclear physiological functions. As adult muscles express high levels of Prmt5, we generated skeletal muscle-specific Prmt5 knockout (Prmt5MKO ) mice. We observe reduced muscle mass, oxidative capacity, force production, and exercise performance in Prmt5MKO mice. The motor deficiency is associated with scarce lipid droplets in myofibers due to defects in lipid biosynthesis and accelerated degradation. Specifically, PRMT5 deletion reduces dimethylation and stability of Sterol Regulatory Element-Binding Transcription Factor 1a (SREBP1a), a master regulator of de novo lipogenesis. Moreover, Prmt5MKO impairs the repressive H4R3 symmetric dimethylation at the Pnpla2 promoter, elevating the level of its encoded protein ATGL, the rate-limiting enzyme catalyzing lipolysis. Accordingly, skeletal muscle-specific double knockout of Pnpla2 and Prmt5 normalizes muscle mass and function. Together, our findings delineate a physiological function of PRMT5 in linking lipid metabolism to contractile function of myofibers.


Assuntos
Proteína-Arginina N-Metiltransferases , Transferases , Animais , Camundongos , Arginina/metabolismo , Metabolismo dos Lipídeos/genética , Músculo Esquelético/metabolismo , Proteína-Arginina N-Metiltransferases/genética , Proteína-Arginina N-Metiltransferases/metabolismo , Transferases/metabolismo
2.
Diabetologia ; 66(2): 390-405, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36378328

RESUMO

AIMS/HYPOTHESIS: Acetyl coenzyme A acetyltransferase (ACAT), also known as acetoacetyl-CoA thiolase, catalyses the formation of acetoacetyl-CoA from acetyl-CoA and forms part of the isoprenoid biosynthesis pathway. Thus, ACAT plays a central role in cholesterol metabolism in a variety of cells. Here, we aimed to assess the effect of hepatic Acat2 overexpression on cholesterol metabolism and systemic energy metabolism. METHODS: We generated liver-targeted adeno-associated virus 9 (AAV9) to achieve hepatic Acat2 overexpression in mice. Mice were injected with AAV9 through the tail vein and subjected to morphological, physiological (body composition, indirect calorimetry, treadmill, GTT, blood biochemistry, cardiac ultrasonography and ECG), histochemical, gene expression and metabolomic analysis under normal diet or feeding with high-fat diet to investigate the role of ACAT2 in the liver. RESULTS: Hepatic Acat2 overexpression reduced body weight and total fat mass, elevated the metabolic rate, improved glucose tolerance and lowered the serum cholesterol level of mice. In addition, the overexpression of Acat2 inhibited fatty acid, glucose and ketone metabolic pathways but promoted cholesterol metabolism and changed the bile acid pool and composition of the liver. Hepatic Acat2 overexpression also decreased the size of white adipocytes and promoted lipid metabolism in white adipose tissue. Furthermore, hepatic Acat2 overexpression protected mice from high-fat-diet-induced weight gain and metabolic defects CONCLUSIONS/INTERPRETATION: Our study identifies an essential role for ACAT2 in cholesterol metabolism and systemic energy expenditure and provides key insights into the metabolic benefits of hepatic Acat2 overexpression. Thus, adenoviral Acat2 overexpression in the liver may be a potential therapeutic tool in the treatment of obesity and hypercholesterolaemia.


Assuntos
Colesterol , Metabolismo dos Lipídeos , Camundongos , Animais , Metabolismo dos Lipídeos/genética , Fígado/metabolismo , Obesidade/genética , Obesidade/metabolismo , Glucose/metabolismo
3.
J Biol Chem ; 298(10): 102339, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35931121

RESUMO

Family with sequence similarity 83 A (FAM83A) is a newly discovered proto-oncogene that has been shown to play key roles in various cancers. However, the function of FAM83A in other physiological processes is not well known. Here, we report a novel function of FAM83A in adipocyte differentiation. We used an adipocyte-targeting fusion oligopeptide (FITC-ATS-9R) to deliver a FAM83A-sgRNA/Cas9 plasmid to knockdown Fam83a (ATS/sg-FAM83A) in white adipose tissue in mice, which resulted in reduced white adipose tissue mass, smaller adipocytes, and mitochondrial damage that was aggravated by a high-fat diet. In cultured 3T3-L1 adipocytes, we found loss or knockdown of Fam83a significantly repressed lipid droplet formation and downregulated the expression of lipogenic genes and proteins. Furthermore, inhibition of Fam83a decreased mitochondrial ATP production through blockage of the electron transport chain, associated with enhanced apoptosis. Mechanistically, we demonstrate FAM83A interacts with casein kinase 1 (CK1) and promotes the permeability of the mitochondrial outer membrane. Furthermore, loss of Fam83a in adipocytes hampered the formation of the TOM40 complex and impeded CK1-driven lipogenesis. Taken together, these results establish FAM83A as a critical regulator of mitochondria maintenance during adipogenesis.


Assuntos
Adipócitos Brancos , Adipogenia , Caseína Quinase I , Mitocôndrias , Proteínas de Neoplasias , Proto-Oncogenes , Animais , Camundongos , Células 3T3-L1 , Adipócitos Brancos/citologia , Adipócitos Brancos/metabolismo , Adipogenia/genética , Caseína Quinase I/metabolismo , Diferenciação Celular , Mitocôndrias/genética , Mitocôndrias/metabolismo , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/metabolismo
4.
Exp Physiol ; 108(2): 240-252, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36454193

RESUMO

NEW FINDINGS: What is the central question of this study? Skeletal muscle extracellular vesicles likely act as pro-angiogenic signalling factors: does overexpression of peroxisome proliferator-activated receptor γ coactivator 1-α (PGC-1α) alter skeletal muscle myotube extracellular vesicle release, contents and angiogenic potential? What is the main finding and its importance? Overexpression of PGC-1α results in secretion of extracellular vesicles that elevate measures of angiogenesis and protect against acute oxidative stress in vitro. Skeletal muscle with high levels of PGC-1α expression, commonly associated with exercise induced angiogenesis and high basal capillarization, may secrete extracellular vesicles that support capillary growth and maintenance. ABSTRACT: Skeletal muscle capillarization is proportional to muscle fibre mitochondrial content and oxidative capacity. Skeletal muscle cells secrete many factors that regulate neighbouring capillary endothelial cells (ECs), including extracellular vesicles (SkM-EVs). Peroxisome proliferator-activated receptor γ coactivator 1-α (PGC-1α) regulates mitochondrial biogenesis and the oxidative phenotype in skeletal muscle. Skeletal muscle PGC-1α also regulates secretion of multiple angiogenic factors, but it is unknown whether PGC-1α regulates SkM-EV release, contents and angiogenic signalling potential. PGC-1α was overexpressed via adenovirus in primary human myotubes. EVs were collected from PGC-1α-overexpressing myotubes (PGC-EVs) as well as from green fluorescent protein-overexpressing myotubes (GFP-EVs), and from untreated myotubes. EV release and select mRNA contents were measured from EVs. Additionally, ECs were treated with EVs to measure angiogenic potential of EVs in normal conditions and following an oxidative stress challenge. PGC-1α overexpression did not impact EV release but did elevate EV content of mRNAs for several antioxidant proteins (nuclear factor erythroid 2-related factor 2, superoxide dismutase 2, glutathione peroxidase). PGC-EV treatment of cultured human umbilical vein endothelial cells (HUVECs) increased their proliferation (+36.6%), tube formation (length: +28.1%; number: +25.7%) and cellular viability (+52.9%), and reduced reactive oxygen species levels (-41%) compared to GFP-EVs. Additionally, PGC-EV treatment protected against tube formation impairments and induction of cellular senescence following acute oxidative stress. Overexpression of PGC-1α in human myotubes increases the angiogenic potential of SkM-EVs. These angiogenic benefits coincided with increased anti-oxidative capacity of recipient HUVECs. High PGC-1α expression in skeletal muscle may prompt the release of SkM-EVs that support vascular redox homeostasis and angiogenesis.


Assuntos
Vesículas Extracelulares , Fatores de Transcrição , Humanos , Fatores de Transcrição/metabolismo , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/metabolismo , Músculo Esquelético/metabolismo , Células Endoteliais da Veia Umbilical Humana/metabolismo , Vesículas Extracelulares/metabolismo
5.
FASEB J ; 35(4): e21426, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33749882

RESUMO

Mitochondrial remodeling through fusion and fission is crucial for progenitor cell differentiation but its role in myogenesis is poorly understood. Here, we characterized the function of mitofusin 2 (Mfn2), a mitochondrial outer membrane protein critical for mitochondrial fusion, in muscle progenitor cells (myoblasts). Mfn2 expression is upregulated during myoblast differentiation in vitro and muscle regeneration in vivo. Targeted deletion of Mfn2 gene in myoblasts (Mfn2MKO ) increases oxygen-consumption rates (OCR) associated with the maximal respiration and spare respiratory capacity, and increased levels of reactive oxygen species (ROS). Skeletal muscles of Mfn2MKO mice exhibit robust mitochondrial swelling with normal mitochondrial DNA content. Additionally, mitochondria isolated from Mfn2MKO muscles have reduced OCR at basal state and for complex I respiration, associated with decreased levels of complex I proteins NDUFB8 (NADH ubiquinone oxidoreductase subunit B8) and NDUFS3 (NADH ubiquinone oxidoreductase subunit S3). However, Mfn2MKO has no obvious effects on myoblast differentiation, muscle development and function, and muscle regeneration. These results demonstrate a novel role of Mfn2 in regulating mitochondrial complex I protein abundance and respiratory functions in myogenic progenitors and myofibers.


Assuntos
Complexo de Proteínas da Cadeia de Transporte de Elétrons/metabolismo , GTP Fosfo-Hidrolases/metabolismo , Animais , DNA Mitocondrial/genética , DNA Mitocondrial/metabolismo , Complexo de Proteínas da Cadeia de Transporte de Elétrons/genética , Complexo I de Transporte de Elétrons , Feminino , GTP Fosfo-Hidrolases/genética , Regulação da Expressão Gênica , Masculino , Camundongos , Camundongos Knockout , Mitocôndrias Musculares , Desenvolvimento Muscular , Músculo Esquelético , Estresse Oxidativo , Consumo de Oxigênio , Condicionamento Físico Animal , Espécies Reativas de Oxigênio , Células-Tronco
6.
FASEB J ; 35(1): e21154, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33140469

RESUMO

Myogenesis includes sequential stages of progenitor cell proliferation, myogenic commitment and differentiation, myocyte fusion, and myotube maturation. Different stages of myogenesis are orchestrated and regulated by myogenic regulatory factors and various downstream cellular signaling. Here we identify phosphatase orphan 1 (Phospho1) as a new player in myogenesis. During activation, proliferation, and differentiation of quiescent satellite cells, the expression of Phospho1 gradually increases. Overexpression of Phospho1 inhibits myoblast proliferation but promotes their differentiation and fusion. Conversely, knockdown of Phospho1 accelerates myoblast proliferation but impairs myotube formation. Moreover, knockdown of Phospho1 decreases the OXPHO protein levels and mitochondria density, whereas overexpression of Phospho1 upregulates OXPHO protein levels and promotes mitochondrial oxygen consumption. Finally, we show that Phospho1 expression is controlled by myogenin, which binds to the promoter of Phospho1 to regulate its transcription. These results indicate a key role of Phospho1 in regulating myogenic differentiation and mitochondrial function.


Assuntos
Diferenciação Celular , Proliferação de Células , Regulação Enzimológica da Expressão Gênica , Desenvolvimento Muscular , Mioblastos Esqueléticos/enzimologia , Monoéster Fosfórico Hidrolases/biossíntese , Animais , Camundongos , Mitocôndrias Musculares/genética , Mitocôndrias Musculares/metabolismo , Miogenina/genética , Miogenina/metabolismo , Monoéster Fosfórico Hidrolases/genética
7.
FASEB J ; 35(11): e21965, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34669999

RESUMO

Obesity and metabolic disorders caused by energy surplus pose an increasing concern within the global population. Brown adipose tissue (BAT) dissipates energy through mitochondrial non-shivering thermogenesis, thus representing a powerful agent against obesity. Here we explore the novel role of a mitochondrial outer membrane protein, LETM1-domain containing 1 (LETMD1), in BAT. We generated a knockout (Letmd1KO ) mouse model and analyzed BAT morphology, function and gene expression under various physiological conditions. While the Letmd1KO mice are born normally and have normal morphology and body weight, they lose multilocular brown adipocytes completely and have diminished mitochondrial abundance, DNA copy number, cristae structure, and thermogenic gene expression in the intrascapular BAT, associated with elevated reactive oxidative stress. In consequence, the Letmd1KO mice fail to maintain body temperature in response to acute cold exposure without food and become hypothermic within 4 h. Although the cold-exposed Letmd1KO mice can maintain body temperature in the presence of food, they cannot upregulate expression of uncoupling protein 1 (UCP1) and convert white to beige adipocytes, nor can they respond to adrenergic stimulation. These results demonstrate that LETMD1 is essential for mitochondrial structure and function, and thermogenesis of brown adipocytes.


Assuntos
Adipócitos Marrons/metabolismo , Tecido Adiposo Marrom/metabolismo , Mitocôndrias/metabolismo , Proteínas Oncogênicas/fisiologia , Receptores de Superfície Celular/fisiologia , Termogênese , Adipócitos Marrons/citologia , Tecido Adiposo Marrom/citologia , Animais , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Obesidade/metabolismo
8.
Exp Physiol ; 107(8): 906-918, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35561231

RESUMO

NEW FINDINGS: What is the central question of this study? Do obesity and acute resistance exercise alter the regulation of muscle intercellular communication pathways consistent with inadequate compensatory angiogenesis in response to muscle loading present in individuals with obesity? What is the main finding and its importance? Obesity is associated with differences in both pro- and anti-angiogenic signalling consistent with lower muscle capillarization. Acute resistance exercise increases the release of skeletal muscle small extracellular vesicles independent of body mass. These results identify new cellular factors associated with impaired angiogenesis in obesity and the positive effects of acute resistance exercise in lean and obese skeletal muscle. ABSTRACT: Obesity (OB) impairs cell-to-cell communication signalling. Small extracellular vesicles (EVs), which include exosomes, are released by skeletal muscle and participate in cell-to-cell communication, including the regulation of angiogenesis. Resistance exercise (REx) increases muscle fibre size and capillarization. Although obesity increases muscle fibre size, there is an inadequate increase in capillarization such that capillary density is reduced. It was hypothesized that REx-induced angiogenic signalling and EV biogenesis would be lower with obesity. Sedentary lean (LN) and OB subjects (n = 8 per group) performed three sets of single-leg knee-extension REx at 80% of maximum. Muscle biopsies were obtained at rest, 15 min and 3 h postexercise and analysed for angiogenic and EV biogenesis mRNA and protein. In OB subjects, muscle fibre size was ∼20% greater and capillary density with type II fibres ∼25% lower compared with LN subjects (P < 0.001). In response to REx, the increase in VEGF mRNA (pro-angiogenic) was similar (3-fold) between groups, while thrombospondin-1 (TSP-1) mRNA (anti-angiogenic) increased ∼2.5-fold in OB subjects only (P = 0.010). miR-130a (pro-angiogenic) was ∼1.4-fold (P = 0.011) and miR-503 (anti-angiogenic) ∼1.8-fold (P = 0.017) greater in OB compared with LN subjects at all time points. In both groups, acute REx decreased the EV surface protein Alix by ∼50%, consistent with the release of exosomes (P = 0.016). Acute REx appears to induce the release of skeletal muscle small EVs independent of body mass. However, with obesity there is predominantly impaired angiogenic signalling, consistent with inadequate angiogenesis in response to basal muscle hypertrophy.


Assuntos
Músculo Esquelético , Neovascularização Fisiológica , Obesidade , Treinamento Resistido , Humanos , MicroRNAs/metabolismo , Músculo Esquelético/fisiologia , Obesidade/metabolismo , RNA Mensageiro/metabolismo , Fator A de Crescimento do Endotélio Vascular/metabolismo
9.
Exp Physiol ; 107(5): 462-475, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35293040

RESUMO

NEW FINDINGS: What is the central question of this study? Is 1 week of exercise training sufficient to reduce local and systemic inflammation? Do obesity and short-term concurrent aerobic and resistance exercise training alter skeletal muscle extracellular vesicle (EV) contents? What is the main finding and its importance? Obesity alters skeletal muscle small EV microRNAs targeting inflammatory and growth pathways. Exercise training alters skeletal muscle small EV microRNAs targeting inflammatory pathways, indicative of reduced inflammation. Our findings provide support for the hypotheses that EVs play a vital role in intercellular communication during health and disease and that EVs mediate many of the beneficial effects of exercise. ABSTRACT: Obesity is associated with chronic inflammation characterized by increased levels of inflammatory cytokines, whereas exercise training reduces inflammation. Small extracellular vesicles (EVs; 30-150 nm) participate in cell-to-cell communication in part through microRNA (miRNA) post-transcriptional regulation of mRNA. We examined whether obesity and concurrent aerobic and resistance exercise training alter skeletal muscle EV miRNA content and inflammatory signalling. Vastus lateralis biopsies were obtained from sedentary individuals with (OB) and without obesity (LN). Before and after 7 days of concurrent aerobic and resistance training, muscle-derived small EV miRNAs and whole-muscle mRNAs were measured. Pathway analysis revealed that obesity alters small EV miRNAs that target inflammatory (SERPINF1, death receptor and Gαi ) and growth pathways (Wnt/ß-catenin, PTEN, PI3K/AKT and IGF-1). In addition, exercise training alters small EV miRNAs in an anti-inflammatory manner, targeting the IL-10, IL-8, Toll-like receptor and nuclear factor-κB signalling pathways. In whole muscle, IL-8 mRNA was reduced by 50% and Jun mRNA by 25% after exercise training, consistent with the anti-inflammatory effects of exercise on skeletal muscle. Obesity and 7 days of concurrent exercise training differentially alter skeletal muscle-derived small EV miRNA contents targeting inflammatory and anabolic pathways.


Assuntos
Vesículas Extracelulares , MicroRNAs , Exercício Físico/fisiologia , Vesículas Extracelulares/genética , Vesículas Extracelulares/metabolismo , Humanos , Inflamação/metabolismo , Interleucina-8/metabolismo , MicroRNAs/genética , Músculo Esquelético/fisiologia , Obesidade/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , RNA Mensageiro/metabolismo
10.
Mol Ther ; 29(1): 132-148, 2021 01 06.
Artigo em Inglês | MEDLINE | ID: mdl-33068545

RESUMO

Duchenne muscular dystrophy (DMD) is caused by a mutation of the muscle membrane protein dystrophin and characterized by severe degeneration of myofibers, progressive muscle wasting, loss of mobility, and, ultimately, cardiorespiratory failure and premature death. Currently there is no cure for DMD. Herein, we report that skeletal muscle-specific knockout (KO) of the phosphatase and tensin homolog (Pten) gene in an animal model of DMD (mdx mice) alleviates myofiber degeneration and restores muscle function without increasing tumor incidence. Specifically, Pten KO normalizes myofiber size and prevents muscular atrophy, and it improves grip strength and exercise performance in mdx mice. Pten KO also reduces fibrosis and inflammation, and it ameliorates muscle pathology in mdx mice. Unbiased RNA sequencing reveals that Pten KO upregulates extracellular matrix and basement membrane components positively correlated with wound healing and suppresses negative regulators of wound healing and lipid biosynthesis, thus improving the integrity of muscle basement membrane at the ultrastructural level. Importantly, pharmacological inhibition of PTEN similarly ameliorates muscle pathology and improves muscle integrity and function in mdx mice. Our findings provide evidence that PTEN inhibition may represent a potential therapeutic strategy to restore muscle function in DMD.


Assuntos
Técnicas de Silenciamento de Genes , Músculo Esquelético/metabolismo , Distrofia Muscular de Duchenne/genética , PTEN Fosfo-Hidrolase/genética , Regeneração/genética , Animais , Biomarcadores , Modelos Animais de Doenças , Metabolismo dos Lipídeos , Camundongos , Camundongos Endogâmicos mdx , Músculo Esquelético/patologia , Músculo Esquelético/fisiopatologia , Músculo Esquelético/ultraestrutura , Distrofia Muscular de Duchenne/fisiopatologia
11.
Exp Physiol ; 106(10): 2083-2095, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34333817

RESUMO

NEW FINDINGS: What is the central question of this study? What is the impact of stress-induced premature senescence on skeletal muscle myoblast-derived extracellular vesicles (EVs) and myoblast-endothelial cell crosstalk? What is the main finding and its importance? Hydrogen peroxide treatment of human myoblasts induced stress-induced premature senescence (SIPS) and increased the release of exosome-sized EVs (30-150 nm in size) five-fold compared to untreated controls. Treatment of SIPS myoblast-derived EVs on endothelial cells increased senescence markers and decreased proliferation. Gene expression analysis of SIPS myoblast-derived EVs revealed a four-fold increase in senescence factor transforming growth factor-ß. These results highlight potential mechanisms by which senescence imparts deleterious effects on the cellular microenvironment. ABSTRACT: Cellular senescence contributes to numerous diseases through the release of pro-inflammatory factors as part of the senescence-associated secretory phenotype (SASP). In skeletal muscle, resident muscle progenitor cells (satellite cells) express markers of senescence with advancing age and in response to various pathologies, which contributes to reduced regenerative capacities in vitro. Satellite cells regulate their microenvironment in part through the release of extracellular vesicles (EVs), but the effect of senescence on EV signaling is unknown. Primary human myoblasts were isolated following biopsies of the vastus lateralis from young healthy subjects. Hydrogen peroxide (H2 O2 ) treatment was used to achieve stress-induced premature senescence (SIPS) of myoblasts. EVs secreted by myoblasts with and without H2 O2 treatment were isolated, analysed and used to treat human umbilical vein endothelial cells (HUVECs) to assess senescence and angiogenic impact. H2 O2 treatment of primary human myoblasts in vitro increased markers of senescence (ß-galactosidase and p21Cip1 ), decreased proliferation and increased exosome-like EV (30-150 nm) release approximately five-fold. In HUVECs, EV treatment from H2 O2 -treated myoblasts increased markers of senescence (ß-galactosidase and transforming growth factor ß), decreased proliferation and impaired HUVEC tube formation. Analysis of H2 O2 -treated myoblast-derived EV mRNA revealed a nearly four-fold increase in transforming growth factor ß expression. Our novel results highlight the impact of SIPS on myoblast communication and identify a VasoMyo Crosstalk by which SIPS myoblast-derived EVs impair endothelial cell function in vitro.


Assuntos
Vesículas Extracelulares , Mioblastos Esqueléticos , Proliferação de Células , Senescência Celular , Vesículas Extracelulares/metabolismo , Células Endoteliais da Veia Umbilical Humana , Humanos , Mioblastos Esqueléticos/metabolismo
12.
Angew Chem Int Ed Engl ; 60(14): 7559-7563, 2021 03 29.
Artigo em Inglês | MEDLINE | ID: mdl-33460514

RESUMO

Unraveling the complexity of the lipidome requires the development of novel approaches for the structural characterization of lipid species with isomer-level discrimination. Herein, we introduce an online photochemical approach for lipid isomer identification through selective derivatization of double bonds by reaction with singlet oxygen. Lipid hydroperoxide products are generated promptly after laser irradiation. Fragmentation of these species in a mass spectrometer produces diagnostic fragments revealing the C=C locations in the unreacted lipids. This approach uses an inexpensive light source and photosensitizer making it easy to incorporate into any lipidomics workflow. We demonstrate the utility of this approach for the shotgun profiling of C=C locations in different lipid classes present in tissue extracts using electrospray ionization (ESI) and ambient imaging of lipid species differing only by the location of C=C bonds using nanospray desorption electrospray ionization (nano-DESI).


Assuntos
Carbono/química , Lipídeos/química , Peróxido de Hidrogênio/química , Isomerismo , Marcação por Isótopo , Fármacos Fotossensibilizantes/química , Oxigênio Singlete/química , Espectrometria de Massas por Ionização por Electrospray
13.
J Biol Chem ; 294(37): 13718-13728, 2019 09 13.
Artigo em Inglês | MEDLINE | ID: mdl-31346037

RESUMO

Protein methyltransferases mediate posttranslational modifications of both histone and nonhistone proteins. Whereas histone methylation is well-known to regulate gene expression, the biological significance of nonhistone methylation is poorly understood. Methyltransferase-like 21c (Mettl21c) is a newly classified nonhistone lysine methyltransferase whose in vivo function has remained elusive. Using a Mettl21cLacZ knockin mouse model, we show here that Mettl21c expression is absent during myogenesis and restricted to mature type I (slow) myofibers in the muscle. Using co-immunoprecipitation, MS, and methylation assays, we demonstrate that Mettl21c trimethylates heat shock protein 8 (Hspa8) at Lys-561 to enhance its stability. As such, Mettl21c knockout reduced Hspa8 trimethylation and protein levels in slow muscles, and Mettl21c overexpression in myoblasts increased Hspa8 trimethylation and protein levels. We further show that Mettl21c-mediated stabilization of Hspa8 enhances its function in chaperone-mediated autophagy, leading to degradation of client proteins such as the transcription factors myocyte enhancer factor 2A (Mef2A) and Mef2D. In contrast, Mettl21c knockout increased Mef2 protein levels in slow muscles. These results identify Hspa8 as a Mettl21c substrate and reveal that nonhistone methylation has a physiological function in protein stabilization.


Assuntos
Proteínas de Choque Térmico HSC70/metabolismo , Metiltransferases/metabolismo , Miofibrilas/metabolismo , Animais , Autofagia , Feminino , Técnicas de Introdução de Genes/métodos , Células HEK293 , Proteínas de Choque Térmico HSC70/genética , Proteínas de Choque Térmico/metabolismo , Humanos , Fatores de Transcrição MEF2/genética , Masculino , Metilação , Metiltransferases/genética , Camundongos , Desenvolvimento Muscular/genética , Músculos/metabolismo , Mioblastos/metabolismo , Miofibrilas/genética , Processamento de Proteína Pós-Traducional
14.
Funct Integr Genomics ; 20(5): 645-656, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32458191

RESUMO

Breast milk plays an essential role for offspring development; however, there lacks evidence of how specific milk components like nucleic acids mechanistically function to regulate neonate development. Previously, we found that maternal high-fat diet (HFD) not only significantly affected mRNA and miRNA content of the secreted milk transcriptome in mice but also affected the duodenal proteome of suckling pups. Here, we hypothesized that nucleic acids differentially expressed in milk of HFD fed dams are related to differentially abundant proteins in offspring duodenum nursed by HFD dams. We tested this hypothesis by analyzing one-to-one relationships in RNA-seq data of milk transcriptomes from control (10% kcal fat) and HFD (60% kcal fat) fed mice and liquid chromatography-tandem mass spectrometry (LC-MS/MS) duodenal proteome data from pups exposed to milk. Ten percent of differentially abundant duodenal proteins between controls and HFD-exposed pups had predicted upregulation or downregulation based on differential milk RNA content. Of these, 76% were targets of upregulated miRNA, and linear regression analysis indicated relationships (p < 0.05) between multiple milk miRNA counts and duodenal protein abundance. Duodenal proteins that were potential targets of milk miRNA enriched Gene Ontology (GO) terms and KEGG pathways related to cytoskeletal structure and neural development, suggesting potential regulation of pup enteric nervous system. One-to-one relationships between milk miRNA content and protein abundance in neonate duodenum support the potential for milk miRNAs regulating neonate development. Identification of milk miRNAs that changed in response to maternal diet will enable design of mechanistic studies that test effects on neonate.


Assuntos
Duodeno/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , MicroRNAs/metabolismo , Leite/metabolismo , Proteínas 14-3-3/metabolismo , Animais , Animais Recém-Nascidos , Dieta Hiperlipídica , Duodeno/crescimento & desenvolvimento , Sistema Nervoso Entérico/crescimento & desenvolvimento , Sistema Nervoso Entérico/metabolismo , Feminino , Camundongos Endogâmicos ICR , Proteoma/metabolismo , RNA Mensageiro/metabolismo , Transdução de Sinais , Transcriptoma , Proteínas rho de Ligação ao GTP/metabolismo
15.
Development ; 144(2): 235-247, 2017 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-27993983

RESUMO

Myogenic regulatory factors (MRFs), including Myf5, MyoD (Myod1) and Myog, are muscle-specific transcription factors that orchestrate myogenesis. Although MRFs are essential for myogenic commitment and differentiation, timely repression of their activity is necessary for the self-renewal and maintenance of muscle stem cells (satellite cells). Here, we define Ascl2 as a novel inhibitor of MRFs. During mouse development, Ascl2 is transiently detected in a subpopulation of Pax7+ MyoD+ progenitors (myoblasts) that become Pax7+ MyoD- satellite cells prior to birth, but is not detectable in postnatal satellite cells. Ascl2 knockout in embryonic myoblasts decreases both the number of Pax7+ cells and the proportion of Pax7+ MyoD- cells. Conversely, overexpression of Ascl2 inhibits the proliferation and differentiation of cultured myoblasts and impairs the regeneration of injured muscles. Ascl2 competes with MRFs for binding to E-boxes in the promoters of muscle genes, without activating gene transcription. Ascl2 also forms heterodimers with classical E-proteins to sequester their transcriptional activity on MRF genes. Accordingly, MyoD or Myog expression rescues myogenic differentiation despite Ascl2 overexpression. Ascl2 expression is regulated by Notch signaling, a key governor of satellite cell self-renewal. These data demonstrate that Ascl2 inhibits myogenic differentiation by targeting MRFs and facilitates the generation of postnatal satellite cells.


Assuntos
Fatores de Transcrição Hélice-Alça-Hélice Básicos/fisiologia , Desenvolvimento Muscular/genética , Fatores de Regulação Miogênica/genética , Animais , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Diferenciação Celular/genética , Células Cultivadas , Embrião de Mamíferos , Feminino , Regulação da Expressão Gênica no Desenvolvimento , Camundongos , Camundongos Knockout , Fatores de Regulação Miogênica/metabolismo , Células Satélites de Músculo Esquelético/metabolismo , Células Satélites de Músculo Esquelético/fisiologia , Transdução de Sinais/genética , Ativação Transcricional/genética
16.
FASEB J ; 33(5): 5876-5886, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30721625

RESUMO

Fibronectin type III domain containing 5 (Fndc5) is a transmembrane protein highly expressed in the skeletal muscle. It was reported that exercise promotes the shedding of the extracellular domain of Fndc5, generating a circulating peptide (irisin) that cross-talks to adipose tissues to convert lipid-storing white adipocytes to energy-catabolizing beige adipocytes. However, the requirement of Fndc5 in mediating the beneficial effect of exercise remains to be determined. Here, we created a mouse model of Fndc5 mutation through transcription activator-like effector nuclease-mediated DNA targeting. The Fndc5 mutant mice have normal skeletal muscle development, growth, regeneration, as well as glucose and lipid metabolism at resting state, even when fed a high-fat diet. In response to running exercise, however, the Fndc5 mutant mice exhibit reduced glucose tolerance and insulin sensitivity and have lower maximal oxygen consumption compared with the exercised wild-type mice. Mechanistically, Fndc5 mutation attenuates exercise-induced browning of white adipose tissue that is crucial for the metabolic benefits of physical activities. These data provide genetic evidence that Fndc5 is dispensable for muscle development and basal metabolism but essential for exercise-induced browning of white adipose tissues in mice.-Xiong, Y., Wu, Z., Zhang, B., Wang, C., Mao, F., Liu, X., Hu, K., Sun, X., Jin, W., Kuang, S. Fndc5 loss-of-function attenuates exercise-induced browning of white adipose tissue in mice.


Assuntos
Tecido Adiposo Marrom/fisiologia , Tecido Adiposo Branco/fisiologia , Fibronectinas/genética , Condicionamento Físico Animal , Animais , Glicemia/análise , Feminino , Fibronectinas/fisiologia , Resistência à Insulina , Metabolismo dos Lipídeos , Masculino , Camundongos , Músculo Esquelético/metabolismo , Mutação , Obesidade/metabolismo , Consumo de Oxigênio , Regeneração , Fatores de Transcrição/metabolismo , Proteína Desacopladora 1/metabolismo
17.
FASEB J ; 33(8): 9672-9684, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31162944

RESUMO

Skeletal muscles contain heterogeneous myofibers that are different in size and contractile speed, with type IIb myofiber being the largest and fastest. Here, we identify methyltransferase-like 21e (Mettl21e), a member of newly classified nonhistone methyltransferases, as a gene enriched in type IIb myofibers. The expression of Mettl21e was strikingly up-regulated in hypertrophic muscles and during myogenic differentiation in vitro and in vivo. Knockdown (KD) of Mettl21e led to atrophy of cultured myotubes, and targeted mutation of Mettl21e in mice reduced the size of IIb myofibers without affecting the composition of myofiber types. Mass spectrometry and methyltransferase assay revealed that Mettl21e methylated valosin-containing protein (Vcp/p97), a key component of the ubiquitin-proteasome system. KD or knockout of Mettl21e resulted in elevated 26S proteasome activity, and inhibition of proteasome activity prevented atrophy of Mettl21e KD myotubes. These results demonstrate that Mettl21e functions to maintain myofiber size through inhibiting proteasome-mediated protein degradation.-Wang, C., Zhang, B., Ratliff, A. C., Arrington, J., Chen, J., Xiong, Y., Yue, F., Nie, Y., Hu, K., Jin, W., Tao, W. A., Hrycyna, C. A., Sun, X., Kuang, S. Methyltransferase-like 21e inhibits 26S proteasome activity to facilitate hypertrophy of type IIb myofibers.


Assuntos
Diferenciação Celular/efeitos dos fármacos , Metiltransferases/metabolismo , Atrofia Muscular/metabolismo , Miofibrilas/metabolismo , Animais , Western Blotting , Bortezomib/uso terapêutico , Diferenciação Celular/genética , Células Cultivadas , Feminino , Imunoprecipitação , Metiltransferases/genética , Camundongos , Camundongos Knockout , Fibras Musculares Esqueléticas/efeitos dos fármacos , Fibras Musculares Esqueléticas/metabolismo , Músculo Esquelético/citologia , Músculo Esquelético/metabolismo , Atrofia Muscular/patologia , Mutação/genética , Mioblastos/efeitos dos fármacos , Mioblastos/metabolismo , Miofibrilas/efeitos dos fármacos , Complexo de Endopeptidases do Proteassoma/genética , Complexo de Endopeptidases do Proteassoma/metabolismo , Reação em Cadeia da Polimerase em Tempo Real , Análise de Sequência de RNA
18.
Exp Physiol ; 105(3): 511-521, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31917487

RESUMO

NEW FINDINGS: What is the central question of this study? What is the impact of acute aerobic and aerobic + resistance (concurrent) exercise on the regulation of multivesicular body formation in human skeletal muscle? What is the main finding and its importance? Gene expression for proteins associated with multivesicular body biogenesis was increased in response to concurrent exercise, and gene expression of microRNA processing (genetic information) was increased in response to aerobic and concurrent exercise. A greater understanding of the processing of multivesicular bodies in response to acute exercise may lead to novel treatments focused on intercellular communication pathways. ABSTRACT: Regular aerobic exercise (AEx) and resistance exercise (REx) promote many beneficial adaptations. Skeletal muscle participates in intercellular communication in part through the release of myokines and extracellular vesicles including exosomes (EXOs), the latter containing mRNA, microRNA (miRNA), lipids and proteins. Exercise-induced regulation of skeletal muscle multivesicular body (MVB) biogenesis leading to EXO formation and release is poorly understood. We hypothesized that acute exercise would increase skeletal muscle MVB biogenesis and EXO release pathways with a greater response to aerobic + resistance exercise (A+REx) than to AEx alone. Twelve sedentary, healthy male subjects exercised on a cycle ergometer for 45 min (AEx) followed by single leg, knee extensor, resistance exercise (A+REx). Vastus lateralis biopsies were obtained at rest and 1 h post-exercise. Key components of the MVB biogenesis, EXO biogenesis and release, and miRNA processing pathways were analysed. Clathrin and Alix mRNA (MVB biogenesis) were increased by A+REx, while DICER and exportin mRNA (miRNA processing) were increased by AEx and A+REx. There were positive relationships between MVBs and miRNA processing genes following both AEx and A+REx consistent with coordinated regulation of these interrelated processes (Alix mRNA increased with Drosha, exportin and Dicer mRNA). Acute exercise increases the regulation of components of MVB and EXO pathways as well as miRNA processing components. A greater understanding of the production and packaging of skeletal muscle MVBs, EXOs and mature miRNA could lead to novel treatments focused on intercellular communication.


Assuntos
Exercício Físico/fisiologia , Exossomos/metabolismo , Exossomos/fisiologia , Corpos Multivesiculares/metabolismo , Corpos Multivesiculares/fisiologia , Transdução de Sinais/fisiologia , Adolescente , Adulto , Humanos , Masculino , MicroRNAs/metabolismo , Músculo Esquelético/metabolismo , Músculo Esquelético/fisiologia , Músculo Quadríceps/fisiologia , RNA Mensageiro/metabolismo , Adulto Jovem
19.
Pharm Res ; 37(11): 221, 2020 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-33063193

RESUMO

Exosomes are secreted extracellular vesicles containing a wide array of biologically active components. Recent studies have demonstrated that exosomes serve as an important vehicle for extracellular communication and exert systemic effects on the physiology of organisms. Adipose tissues (ATs) play a key role in balancing systemic energy homeostasis as a central hub for fatty acid metabolism. At the same time, proper endocrine function of ATs has also been shown to be crucial for regulating physiological and metabolic health. The endocrine function of ATs is partially mediated by AT-derived exosomes that regulate metabolic homeostasis, such as insulin signaling, lipolysis, and inflammation. During the pathogenesis of obesity, metabolic syndrome, and cancer, exosomes shed by the resident cells in ATs may also have a role in regulating the progression of these diseases along with associated pathologies. In this review, we summarize the contents of AT-derived exosomes and their effects on various cell populations along with possible underlying molecular mechanisms. We further discuss the potential applications of exosomes as a drug delivery tool and therapeutic target.


Assuntos
Tecido Adiposo/metabolismo , Exossomos/metabolismo , Tecido Adiposo/patologia , Animais , Exossomos/patologia , Exossomos/transplante , Humanos , Síndrome Metabólica/metabolismo , Síndrome Metabólica/patologia , Síndrome Metabólica/terapia , Neoplasias/metabolismo , Neoplasias/patologia , Neoplasias/terapia , Obesidade/metabolismo , Obesidade/patologia , Obesidade/terapia , Via Secretória , Transdução de Sinais
20.
Pharm Res ; 37(10): 185, 2020 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-32888109

RESUMO

PURPOSE: Inhibition of Notch signaling has been recently demonstrated to promote beige adipocyte biogenesis. However, most γ-secretase inhibitors (GSIs) used to achieve pharmacological inhibition of Notch signaling are at the basic research or preclinical stage, limiting the translation of fundamental findings into clinical practice. This present study aimed to evaluate the potential of several clinical candidates of GSIs as browning agents for the treatment of obesity. METHODS: Seven GSIs that are clinical candidates for the treatment of Alzheimer's disease or cancer were selected and their impacts on Notch inhibition as well as promoting beige biogenesis were compared using in vitro culture of 3T3-L1 preadipocytes. RESULTS: Four compounds (i.e.RO4929097, PF-03084014, LY3039478, and BMS-906024) that efficiently inhibited the expression of Notch target genes in 3T3-L1 preadipocytes were identified. Moreover, these compounds were optimized for dose-dependent effects at three gradient concentrations (0.5, 1, and 10 µM) to promote beige adipogenesis and mitochondrial biogenesis in 3T3-L1 preadipocytes without causing severe cytotoxicity. CONCLUSIONS: Our findings not only highlight the potential of cross-therapeutic application of these GSIs for obesity treatment via inhibition of γ-secretase-mediated processing of Notch signaling, but also provide important experimental evidence to support further design and development of clinically translatable Notch-inhibiting drug delivery systems.


Assuntos
Adipogenia/efeitos dos fármacos , Tecido Adiposo Bege/efeitos dos fármacos , Secretases da Proteína Precursora do Amiloide/antagonistas & inibidores , Fármacos Antiobesidade/farmacologia , Inibidores Enzimáticos/farmacologia , Biogênese de Organelas , Receptores Notch/antagonistas & inibidores , Células 3T3-L1 , Adipócitos/efeitos dos fármacos , Animais , Fármacos Antiobesidade/química , Apoptose/efeitos dos fármacos , Proliferação de Células , Sobrevivência Celular/efeitos dos fármacos , Relação Dose-Resposta a Droga , Inibidores Enzimáticos/química , Gotículas Lipídicas/química , Camundongos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA