Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 44
Filtrar
1.
Cell ; 185(26): 4887-4903.e17, 2022 12 22.
Artigo em Inglês | MEDLINE | ID: mdl-36563662

RESUMO

Our bodies turn over billions of cells daily via apoptosis and are in turn cleared by phagocytes via the process of "efferocytosis." Defects in efferocytosis are now linked to various inflammatory diseases. Here, we designed a strategy to boost efferocytosis, denoted "chimeric receptor for efferocytosis" (CHEF). We fused a specific signaling domain within the cytoplasmic adapter protein ELMO1 to the extracellular phosphatidylserine recognition domains of the efferocytic receptors BAI1 or TIM4, generating BELMO and TELMO, respectively. CHEF-expressing phagocytes display a striking increase in efferocytosis. In mouse models of inflammation, BELMO expression attenuates colitis, hepatotoxicity, and nephrotoxicity. In mechanistic studies, BELMO increases ER-resident enzymes and chaperones to overcome protein-folding-associated toxicity, which was further validated in a model of ER-stress-induced renal ischemia-reperfusion injury. Finally, TELMO introduction after onset of kidney injury significantly reduced fibrosis. Collectively, these data advance a concept of chimeric efferocytic receptors to boost efferocytosis and dampen inflammation.


Assuntos
Macrófagos , Fagocitose , Animais , Camundongos , Macrófagos/metabolismo , Inflamação/metabolismo , Fagócitos/metabolismo , Proteínas de Transporte/metabolismo , Apoptose , Proteínas Adaptadoras de Transdução de Sinal/metabolismo
2.
Cell ; 181(7): 1445-1449, 2020 06 25.
Artigo em Inglês | MEDLINE | ID: mdl-32533917

RESUMO

The COVID19 crisis has magnified the issues plaguing academic science, but it has also provided the scientific establishment with an unprecedented opportunity to reset. Shoring up the foundation of academic science will require a concerted effort between funding agencies, universities, and the public to rethink how we support scientists, with a special emphasis on early career researchers.


Assuntos
Mobilidade Ocupacional , Pesquisadores/tendências , Pesquisa/tendências , Logro , Pesquisa Biomédica , Humanos , Pesquisadores/educação , Ciência/educação , Ciência/tendências , Universidades
3.
Cell ; 179(1): 74-89.e10, 2019 09 19.
Artigo em Inglês | MEDLINE | ID: mdl-31495570

RESUMO

During neural tube closure and spinal cord development, many cells die in both the central and peripheral nervous systems (CNS and PNS, respectively). However, myeloid-derived professional phagocytes have not yet colonized the trunk region during early neurogenesis. How apoptotic cells are removed from this region during these stages remains largely unknown. Using live imaging in zebrafish, we demonstrate that neural crest cells (NCCs) respond rapidly to dying cells and phagocytose cellular debris around the neural tube. Additionally, NCCs have the ability to enter the CNS through motor exit point transition zones and clear debris in the spinal cord. Surprisingly, NCCs phagocytosis mechanistically resembles macrophage phagocytosis and their recruitment toward cellular debris is mediated by interleukin-1ß. Taken together, our results reveal a role for NCCs in phagocytosis of debris in the developing nervous system before the presence of professional phagocytes.


Assuntos
Movimento Celular/fisiologia , Crista Neural/fisiologia , Neurogênese/fisiologia , Sistema Nervoso Periférico/crescimento & desenvolvimento , Fagocitose/fisiologia , Medula Espinal/crescimento & desenvolvimento , Animais , Animais Geneticamente Modificados , Apoptose/fisiologia , Diferenciação Celular/fisiologia , Interleucina-1beta/metabolismo , Fagócitos/fisiologia , Fagossomos/fisiologia , Peixe-Zebra/embriologia
4.
Annu Rev Neurosci ; 45: 177-198, 2022 07 08.
Artigo em Inglês | MEDLINE | ID: mdl-35226828

RESUMO

Neurodevelopment and efferocytosis have fascinated scientists for decades. How an organism builds a nervous system that is precisely tuned for efficient behaviors and survival and how it simultaneously manages constant somatic cell turnover are complex questions that have resulted in distinct fields of study. Although neurodevelopment requires the overproduction of cells that are subsequently pruned back, very few studies marry these fields to elucidate the cellular and molecular mechanisms that drive nervous system development through the lens of cell clearance. In this review, we discuss these fields to highlight exciting areas of future synergy. We first review neurodevelopment from the perspective of overproduction and subsequent refinement and then discuss who clears this developmental debris and the mechanisms that control these events. We then end with how a more deliberate merger ofneurodevelopment and efferocytosis could reframe our understanding of homeostasis and disease and discuss areas of future study.


Assuntos
Apoptose , Fagócitos , Apoptose/fisiologia , Morte Celular , Homeostase , Fagócitos/metabolismo , Fagocitose/fisiologia
5.
Dev Biol ; 515: 186-198, 2024 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-38944329

RESUMO

During neural development, sculpting of early formed circuits by cell death and synaptic pruning is necessary to generate a functional and efficient nervous system. This allows for the establishment of rudimentary circuits which necessitate early organism survival to later undergo subsequent refinement. These changes facilitate additional specificity to stimuli which can lead to increased behavioral complexity. In multiple species, Rohon-Beard neurons (RBs) are the earliest mechanosensory neurons specified and are critical in establishing a rudimentary motor response circuit. Sensory input from RBs gradually becomes redundant as dorsal root ganglion (DRG) neurons develop and integrate into motor circuits. Previous studies demonstrate that RBs undergo a dramatic wave of cell death concurrent with development of the DRG. However, contrary to these studies, we show that neurogenin1+ (ngn1) RBs do not undergo a widespread wave of programmed cell death during early zebrafish development and instead persist until at least 15 days post fertilization (dpf). Starting at 2 dpf, we also observed a dramatic medialization and shrinkage of ngn1+ RB somas along with a gradual downregulation of ngn1 in RBs. This alters a fundamental premise of early zebrafish neural development and opens new avenues to explore mechanisms of RB function, persistence, and circuit refinement.


Assuntos
Apoptose , Fatores de Transcrição Hélice-Alça-Hélice Básicos , Proteínas de Peixe-Zebra , Peixe-Zebra , Animais , Peixe-Zebra/embriologia , Proteínas de Peixe-Zebra/metabolismo , Proteínas de Peixe-Zebra/genética , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Apoptose/fisiologia , Proteínas do Tecido Nervoso/metabolismo , Proteínas do Tecido Nervoso/genética , Gânglios Espinais/embriologia , Neurônios/fisiologia , Neurônios/metabolismo , Neurogênese/fisiologia , Regulação da Expressão Gênica no Desenvolvimento
6.
Proc Natl Acad Sci U S A ; 119(9)2022 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-35197298

RESUMO

As a vertebrate model organism, zebrafish has many unique advantages in developmental studies, regenerative biology, and disease modeling. However, tissue-specific gene knockout in zebrafish is challenging due to technical difficulties in making floxed alleles. Even when successful, tissue-level knockout can affect too many cells, making it difficult to distinguish cell autonomous from noncell autonomous gene function. Here, we present a genetic system termed zebrafish mosaic analysis with double markers (zMADM). Through Cre/loxP-mediated interchromosomal mitotic recombination of two reciprocally chimeric fluorescent genes, zMADM generates sporadic (<0.5%), GFP+ mutant cells along with RFP+ sibling wild-type cells, enabling phenotypic analysis at single-cell resolution. Using wild-type zMADM, we traced two sibling cells (GFP+ and RFP+) in real time during a dynamic developmental process. Using nf1 mutant zMADM, we demonstrated an overproliferation phenotype of nf1 mutant cells in comparison to wild-type sibling cells in the same zebrafish. The readiness of zMADM to produce sporadic mutant cells without the need to generate floxed alleles should fundamentally improve the throughput of genetic analysis in zebrafish; the lineage-tracing capability combined with phenotypic analysis at the single-cell level should lead to deep insights into developmental and disease mechanisms. Therefore, we are confident that zMADM will enable groundbreaking discoveries once broadly distributed in the field.


Assuntos
Linhagem da Célula , Marcadores Genéticos , Mosaicismo , Análise de Célula Única/métodos , Peixe-Zebra/genética , Animais , Sistemas CRISPR-Cas , Técnicas de Silenciamento de Genes
7.
Glia ; 72(10): 1766-1784, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39141572

RESUMO

The central and peripheral nervous systems (CNS and PNS, respectively) exhibit remarkable diversity in the capacity to regenerate following neuronal injury with PNS injuries being much more likely to regenerate than those that occur in the CNS. Glial responses to damage greatly influence the likelihood of regeneration by either promoting or inhibiting axonal regrowth over time. However, despite our understanding of how some glial lineages participate in nerve degeneration and regeneration, less is known about the contributions of peripheral satellite glial cells (SGC) to regeneration failure following central axon branch injury of dorsal root ganglia (DRG) sensory neurons. Here, using in vivo, time-lapse imaging in larval zebrafish coupled with laser axotomy, we investigate the role of SGCs in axonal regeneration. In our studies we show that SGCs respond to injury by relocating their nuclei to the injury site during the same period that DRG neurons produce new central branch neurites. Laser ablation of SGCs prior to axon injury results in more neurite growth attempts and ultimately a higher rate of successful central axon regrowth, implicating SGCs as inhibitors of regeneration. We also demonstrate that this SGC response is mediated in part by ErbB signaling, as chemical inhibition of this receptor results in reduced SGC motility and enhanced central axon regrowth. These findings provide new insights into SGC-neuron interactions under injury conditions and how these interactions influence nervous system repair.


Assuntos
Axotomia , Gânglios Espinais , Regeneração Nervosa , Peixe-Zebra , Animais , Regeneração Nervosa/fisiologia , Animais Geneticamente Modificados , Medula Espinal , Células Satélites Perineuronais/fisiologia , Neuroglia/fisiologia , Proteínas de Peixe-Zebra/metabolismo , Axônios/fisiologia
8.
Nature ; 563(7733): 714-718, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30464343

RESUMO

Development and routine tissue homeostasis require a high turnover of apoptotic cells. These cells are removed by professional and non-professional phagocytes via efferocytosis1. How a phagocyte maintains its homeostasis while coordinating corpse uptake, processing ingested materials and secreting anti-inflammatory mediators is incompletely understood1,2. Here, using RNA sequencing to characterize the transcriptional program of phagocytes actively engulfing apoptotic cells, we identify a genetic signature involving 33 members of the solute carrier (SLC) family of membrane transport proteins, in which expression is specifically modulated during efferocytosis, but not during antibody-mediated phagocytosis. We assessed the functional relevance of these SLCs in efferocytic phagocytes and observed a robust induction of an aerobic glycolysis program, initiated by SLC2A1-mediated glucose uptake, with concurrent suppression of the oxidative phosphorylation program. The different steps of phagocytosis2-that is, 'smell' ('find-me' signals or sensing factors released by apoptotic cells), 'taste' (phagocyte-apoptotic cell contact) and 'ingestion' (corpse internalization)-activated distinct and overlapping sets of genes, including several SLC genes, to promote glycolysis. SLC16A1 was upregulated after corpse uptake, increasing the release of lactate, a natural by-product of aerobic glycolysis3. Whereas glycolysis within phagocytes contributed to actin polymerization and the continued uptake of corpses, lactate released via SLC16A1 promoted the establishment of an anti-inflammatory tissue environment. Collectively, these data reveal a SLC program that is activated during efferocytosis, identify a previously unknown reliance on aerobic glycolysis during apoptotic cell uptake and show that glycolytic by-products of efferocytosis can influence surrounding cells.


Assuntos
Transportador de Glucose Tipo 1/genética , Transportador de Glucose Tipo 1/metabolismo , Glucose/metabolismo , Ácido Láctico/metabolismo , Fagócitos/metabolismo , Fagocitose/genética , Transcriptoma/genética , Aerobiose , Animais , Apoptose , Linhagem Celular , Glicólise , Humanos , Inflamação/genética , Inflamação/prevenção & controle , Células Jurkat , Fagócitos/citologia , Análise de Sequência de RNA , Transcrição Gênica , Peixe-Zebra
9.
Dev Biol ; 482: 114-123, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34932993

RESUMO

Glia are a diverse and essential cell type in the vertebrate nervous system. Transgenic tools and fluorescent reporter lines are critical resources to investigate how glial subtypes develop and function. However, despite the many lines available in zebrafish, the community still lacks the ability to label all unique stages of glial development and specific subpopulations of cells. To address this issue, we screened zebrafish gene and enhancer trap lines to find a novel reporter for peripheral glial subtypes. From these, we generated the gSAIzGFFD37A transgenic line that expresses GFP in neural crest cells and central and peripheral glia. We found that the gene trap construct is located within an intron of erbb3b, a gene essential for glial development. Additionally, we confirmed that GFP+ â€‹cells express erbb3b along with sox10, a known glial marker. From our screen, we have identified the gSAIzGFFD37A line as a novel and powerful tool for studying glia in the developing zebrafish, as well as a new resource to manipulate erbb3b+ â€‹cells.


Assuntos
Peptídeos e Proteínas de Sinalização Intracelular/genética , Crista Neural/metabolismo , Neurogênese/fisiologia , Neuroglia/metabolismo , Proteínas de Peixe-Zebra/genética , Peixe-Zebra/genética , Animais , Animais Geneticamente Modificados/genética , Embrião não Mamífero/embriologia , Regulação da Expressão Gênica no Desenvolvimento/genética , Proteínas de Fluorescência Verde/biossíntese , Proteínas de Fluorescência Verde/genética , Fatores de Transcrição SOXE/biossíntese , Proteínas de Peixe-Zebra/biossíntese
10.
J Neurosci ; 41(25): 5353-5371, 2021 06 23.
Artigo em Inglês | MEDLINE | ID: mdl-33975920

RESUMO

Oligodendrocyte progenitor cells (OPCs) are specified from discrete precursor populations during gliogenesis and migrate extensively from their origins, ultimately distributing throughout the brain and spinal cord during early development. Subsequently, a subset of OPCs differentiates into mature oligodendrocytes, which myelinate axons. This process is necessary for efficient neuronal signaling and organism survival. Previous studies have identified several factors that influence OPC development, including excitatory glutamatergic synapses that form between neurons and OPCs during myelination. However, little is known about how glutamate signaling affects OPC migration before myelination. In this study, we use in vivo, time-lapse imaging in zebrafish in conjunction with genetic and pharmacological perturbation to investigate OPC migration and myelination when the GluR4A ionotropic glutamate receptor subunit is disrupted. In our studies, we observed that gria4a mutant embryos and larvae displayed abnormal OPC migration and altered dorsoventral distribution in the spinal cord. Genetic mosaic analysis confirmed that these effects were cell-autonomous, and we identified that voltage-gated calcium channels were downstream of glutamate receptor signaling in OPCs and could rescue the migration and myelination defects we observed when glutamate signaling was perturbed. These results offer new insights into the complex system of neuron-OPC interactions and reveal a cell-autonomous role for glutamatergic signaling in OPCs during neural development.SIGNIFICANCE STATEMENT The migration of oligodendrocyte progenitor cells (OPCs) is an essential process during development that leads to uniform oligodendrocyte distribution and sufficient myelination for central nervous system function. Here, we demonstrate that the AMPA receptor (AMPAR) subunit GluR4A is an important driver of OPC migration and myelination in vivo and that activated voltage-gated calcium channels are downstream of glutamate receptor signaling in mediating this migration.


Assuntos
Ácido Glutâmico/metabolismo , Neurogênese/fisiologia , Células Precursoras de Oligodendrócitos/metabolismo , Receptores de AMPA/metabolismo , Medula Espinal/embriologia , Animais , Diferenciação Celular/fisiologia , Movimento Celular/fisiologia , Transdução de Sinais/fisiologia , Peixe-Zebra
11.
J Neurosci ; 41(5): 823-833, 2021 02 03.
Artigo em Inglês | MEDLINE | ID: mdl-33468571

RESUMO

Phagocytic activity of glial cells is essential for proper nervous system sculpting, maintenance of circuitry, and long-term brain health. Glial engulfment of apoptotic cells and superfluous connections ensures that neuronal connections are appropriately refined, while clearance of damaged projections and neurotoxic proteins in the mature brain protects against inflammatory insults. Comparative work across species and cell types in recent years highlights the striking conservation of pathways that govern glial engulfment. Many signaling cascades used during developmental pruning are re-employed in the mature brain to "fine tune" synaptic architecture and even clear neuronal debris following traumatic events. Moreover, the neuron-glia signaling events required to trigger and perform phagocytic responses are impressively conserved between invertebrates and vertebrates. This review offers a compare-and-contrast portrayal of recent findings that underscore the value of investigating glial engulfment mechanisms in a wide range of species and contexts.


Assuntos
Encéfalo/citologia , Encéfalo/crescimento & desenvolvimento , Comunicação Celular/fisiologia , Neuroglia/fisiologia , Neurônios/fisiologia , Fagocitose/fisiologia , Animais , Humanos , Especificidade da Espécie
12.
Glia ; 70(10): 1826-1849, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35616185

RESUMO

Spinal motor nerves are necessary for organismal locomotion and survival. In zebrafish and most vertebrates, these peripheral nervous system structures are composed of bundles of axons that naturally regenerate following injury. However, the cellular and molecular mechanisms that mediate this process are still only partially understood. Perineurial glia, which form a component of the blood-nerve barrier, are necessary for the earliest regenerative steps by establishing a glial bridge across the injury site as well as phagocytosing debris. Without perineurial glial bridging, regeneration is impaired. In addition to perineurial glia, Schwann cells, the cells that ensheath and myelinate axons within the nerve, are essential for debris clearance and axon guidance. In the absence of Schwann cells, perineurial glia exhibit perturbed bridging, demonstrating that these two cell types communicate during the injury response. While the presence and importance of perineurial glial bridging is known, the molecular mechanisms that underlie this process remain a mystery. Understanding the cellular and molecular interactions that drive perineurial glial bridging is crucial to unlocking the mechanisms underlying successful motor nerve regeneration. Using laser axotomy and in vivo imaging in zebrafish, we show that transforming growth factor-beta (TGFß) signaling modulates perineurial glial bridging. Further, we identify connective tissue growth factor-a (ctgfa) as a downstream effector of TGF-ß signaling that works in a positive feedback loop to mediate perineurial glial bridging. Together, these studies present a new signaling pathway involved in the perineurial glial injury response and further characterize the dynamics of the perineurial glial bridge.


Assuntos
Traumatismos dos Nervos Periféricos , Peixe-Zebra , Animais , Animais Geneticamente Modificados , Axônios/fisiologia , Regeneração Nervosa/fisiologia , Neuroglia/metabolismo , Traumatismos dos Nervos Periféricos/metabolismo , Nervos Periféricos/metabolismo , Transdução de Sinais , Fator de Crescimento Transformador beta/metabolismo , Fatores de Crescimento Transformadores/metabolismo
13.
PLoS Genet ; 13(4): e1006712, 2017 04.
Artigo em Inglês | MEDLINE | ID: mdl-28379965

RESUMO

Somatosensory information from the periphery is routed to the spinal cord through centrally-projecting sensory axons that cross into the central nervous system (CNS) via the dorsal root entry zone (DREZ). The glial cells that ensheath these axons ensure rapid propagation of this information. Despite the importance of this glial-axon arrangement, how this afferent nerve is assembled during development is unknown. Using in vivo, time-lapse imaging we show that as centrally-projecting pioneer axons from dorsal root ganglia (DRG) enter the spinal cord, they initiate expression of the cytokine TNFalpha. This induction coincides with ensheathment of these axons by associated glia via a TNF receptor 2 (TNFR2)-mediated process. This work identifies a signaling cascade that mediates peripheral glial-axon interactions and it functions to ensure that DRG afferent projections are ensheathed after pioneer axons complete their navigation, which promotes efficient somatosensory neural function.


Assuntos
Neuroglia/metabolismo , Receptores Tipo II do Fator de Necrose Tumoral/genética , Raízes Nervosas Espinhais/metabolismo , Fator de Necrose Tumoral alfa/genética , Animais , Astrócitos/metabolismo , Axônios/metabolismo , Sistema Nervoso Central/crescimento & desenvolvimento , Sistema Nervoso Central/metabolismo , Gânglios Espinais , Regulação da Expressão Gênica no Desenvolvimento , Camundongos , Neuroglia/citologia , Neurônios Aferentes/metabolismo , Sistema Nervoso Periférico/crescimento & desenvolvimento , Sistema Nervoso Periférico/metabolismo , Receptores Tipo II do Fator de Necrose Tumoral/biossíntese , Transdução de Sinais , Medula Espinal/crescimento & desenvolvimento , Medula Espinal/metabolismo , Raízes Nervosas Espinhais/crescimento & desenvolvimento , Fator de Necrose Tumoral alfa/biossíntese , Peixe-Zebra/genética , Peixe-Zebra/crescimento & desenvolvimento
14.
J Neurosci ; 37(18): 4790-4807, 2017 05 03.
Artigo em Inglês | MEDLINE | ID: mdl-28389474

RESUMO

Precisely orchestrated interactions between spinal motor axons and their ensheathing glia are vital for forming and maintaining functional spinal motor nerves. Following perturbations to peripheral myelinating glial cells, centrally derived oligodendrocyte progenitor cells (OPCs) ectopically exit the spinal cord and myelinate peripheral nerves in myelin with CNS characteristics. However, whether remaining peripheral ensheathing glia, such as perineurial glia, properly encase the motor nerve despite this change in glial cell and myelin composition, remains unknown. Using zebrafish mutants in which OPCs migrate out of the spinal cord and myelinate peripheral motor axons, we assayed perineurial glial development, maturation, and response to injury. Surprisingly, in the presence of OPCs, perineurial glia exited the CNS normally. However, aspects of their development, response to injury, and function were altered compared with wildtype larvae. In an effort to better understand the plasticity of perineurial glia in response to myelin perturbations, we identified transforming growth factor-ß1 as a partial mediator of perineurial glial development. Together, these results demonstrate the incredible plasticity of perineurial glia in the presence of myelin perturbations.SIGNIFICANCE STATEMENT Peripheral neuropathies can result from damage or dysregulation of the insulating myelin sheath surrounding spinal motor axons, causing pain, inefficient nerve conduction, and the ectopic migration of oligodendrocyte progenitor cells (OPCs), the resident myelinating glial cell of the CNS, into the periphery. How perineurial glia, the ensheathing cells that form the protective blood-nerve barrier, are impacted by this myelin composition change is unknown. Here, we report that certain aspects of perineurial glial development and injury responses are mostly unaffected in the presence of ectopic OPCs. However, perineurial glial function is disrupted along nerves containing centrally derived myelin, demonstrating that, although perineurial glial cells display plasticity despite myelin perturbations, the blood-nerve barrier is compromised in the presence of ectopic OPCs.


Assuntos
Barreira Hematoencefálica/embriologia , Neuroglia/fisiologia , Plasticidade Neuronal/fisiologia , Nervos Periféricos/embriologia , Nervos Periféricos/metabolismo , Fator de Crescimento Transformador beta/metabolismo , Animais , Animais Geneticamente Modificados , Barreira Hematoencefálica/citologia , Barreira Hematoencefálica/fisiologia , Neurogênese/fisiologia , Neuroglia/citologia , Nervos Periféricos/citologia , Peixe-Zebra , Proteínas de Peixe-Zebra
15.
J Neurochem ; 145(1): 6-18, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29377124

RESUMO

Myelin, an insulating membrane that enables rapid action potential propagation, is an essential component of an efficient, functional vertebrate nervous system. Oligodendrocytes, the myelinating glia of the central nervous system (CNS), produce myelin throughout the CNS, which requires continuous proliferation, migration, and differentiation of oligodendrocyte progenitor cells. Because myelination is essential for efficient neurotransmission, researchers hypothesize that neuronal signals may regulate the cascade of events necessary for this process. The ability of oligodendrocytes and oligodendrocyte progenitor cells to detect and respond to neuronal activity is becoming increasingly appreciated, although the specific signals involved are still a matter of debate. Recent evidence from multiple studies points to purinergic signaling as a potential regulator of oligodendrocyte development and differentiation. Adenosine triphosphate (ATP) and its derivatives are potent signaling ligands with receptors expressed on many populations of cells in the nervous system, including cells of the oligodendrocyte lineage. Release of ATP into the extracellular space can initiate a multitude of signaling events, and these downstream signals are specific to the particular purinergic receptor (or receptors) expressed, and whether enzymes are present to hydrolyze ATP to its derivatives adenosine diphosphate and adenosine, each of which can activate their own unique downstream signaling cascades. This review will introduce purinergic signaling in the CNS and discuss evidence for its effects on oligodendrocyte proliferation, differentiation, and myelination. We will review sources of extracellular purines in the nervous system and how changes in purinergic receptor expression may be coupled to oligodendrocyte differentiation. We will also briefly discuss purinergic signaling in injury and diseases of the CNS.


Assuntos
Oligodendroglia/citologia , Oligodendroglia/fisiologia , Receptores Purinérgicos/metabolismo , Transdução de Sinais/fisiologia , Animais , Diferenciação Celular/fisiologia , Sistema Nervoso Central/citologia , Sistema Nervoso Central/fisiologia , Humanos , Células-Tronco Neurais/citologia , Células-Tronco Neurais/fisiologia , Neurogênese/fisiologia
16.
Dev Dyn ; 246(11): 956-962, 2017 11.
Artigo em Inglês | MEDLINE | ID: mdl-28598521

RESUMO

BACKGROUND: Spinal motor nerves are essential for relaying information between the central and peripheral nervous systems. Perturbations to cell types that comprise these nerves may impair rapid and efficient transmission of action potentials and alter nerve function. Identifying ultrastructural changes resulting from defects to these cellular components via transmission electron microscopy (TEM) can provide valuable insight into nerve function and disease. However, efficiently locating spinal motor nerves in adult zebrafish for TEM is challenging and time-consuming. Because of this, we developed a protocol that allows us to quickly and precisely locate spinal motor nerve roots in adult zebrafish for TEM processing. RESULTS: Following fixation, a transverse slab of adult zebrafish dissected from the trunk region was mounted in embedding media, sectioned, and secondary fixation with osmium tetroxide performed. Transverse sections containing motor nerves were selected for TEM ultrathin sectioning and imaging. CONCLUSIONS: We developed an efficient protocol for locating spinal motor nerves in adult zebrafish to allow for ultrastructural characterization. Although our work focuses on spinal motor nerves, this protocol may be useful for efficiently identifying other discrete, repeated structures within the developing and mature nervous system that are difficult to find via traditional, whole organism TEM processing. Developmental Dynamics 246:956-962, 2017. © 2017 Wiley Periodicals, Inc.


Assuntos
Microscopia Eletrônica de Transmissão/métodos , Raízes Nervosas Espinhais/ultraestrutura , Animais , Técnicas Histológicas/métodos , Peixe-Zebra/anatomia & histologia
17.
PLoS Biol ; 12(9): e1001961, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-25268888

RESUMO

Rapid conduction of action potentials along motor axons requires that oligodendrocytes and Schwann cells myelinate distinct central and peripheral nervous system (CNS and PNS) domains along the same axon. Despite the importance of this arrangement for nervous system function, the mechanisms that establish and maintain this precise glial segregation at the motor exit point (MEP) transition zone are unknown. Using in vivo time-lapse imaging in zebrafish, we observed that prior to myelination, oligodendrocyte progenitor cells (OPCs) extend processes into the periphery via the MEP and immediately upon contact with spinal motor root glia retract back into the spinal cord. Characterization of the peripheral cell responsible for repelling OPC processes revealed that it was a novel, CNS-derived population of glia we propose calling MEP glia. Ablation of MEP glia resulted in the absence of myelinating glia along spinal motor root axons and an immediate breach of the MEP by OPCs. Taken together, our results identify a novel population of CNS-derived peripheral glia located at the MEP that selectively restrict the migration of OPCs into the periphery via contact-mediated inhibition.


Assuntos
Neurônios Motores/citologia , Oligodendroglia/citologia , Medula Espinal/citologia , Células-Tronco/citologia , Peixe-Zebra/crescimento & desenvolvimento , Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Animais , Axônios/ultraestrutura , Diferenciação Celular , Linhagem da Célula/genética , Movimento Celular , Regulação da Expressão Gênica no Desenvolvimento , Morfogênese , Neurônios Motores/metabolismo , Bainha de Mielina/ultraestrutura , Oligodendroglia/metabolismo , Especificidade de Órgãos , Proteínas Repressoras/genética , Proteínas Repressoras/metabolismo , Células de Schwann/citologia , Células de Schwann/metabolismo , Medula Espinal/crescimento & desenvolvimento , Medula Espinal/metabolismo , Células-Tronco/metabolismo , Imagem com Lapso de Tempo , Peixe-Zebra/genética , Peixe-Zebra/metabolismo , Proteínas de Peixe-Zebra/genética , Proteínas de Peixe-Zebra/metabolismo
18.
Glia ; 64(7): 1138-53, 2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-27029762

RESUMO

In the mature vertebrate nervous system, central and peripheral nervous system (CNS and PNS, respectively) GLIA myelinate distinct motor axon domains at the motor exit point transition zone (MEP TZ). How these cells preferentially associate with and myelinate discrete, non-overlapping CNS versus PNS axonal segments, is unknown. Using in vivo imaging and genetic cell ablation in zebrafish, we demonstrate that radial glia restrict migration of PNS glia into the spinal cord during development. Prior to development of radial glial endfeet, peripheral cells freely migrate back and forth across the MEP TZ. However, upon maturation, peripherally located cells never enter the CNS. When we ablate radial glia, peripheral glia ectopically migrate into the spinal cord during developmental stages when they would normally be restricted. These findings demonstrate that radial glia contribute to both CNS and PNS development and control the unidirectional movement of glial cell types across the MEP TZ early in development. GLIA 2016. GLIA 2016;64:1138-1153.


Assuntos
Movimento Celular/fisiologia , Sistema Nervoso/citologia , Neuroglia/fisiologia , Medula Espinal/citologia , Animais , Animais Geneticamente Modificados , Embrião não Mamífero , Proteínas Luminescentes/genética , Proteínas Luminescentes/metabolismo , Neurônios Motores/fisiologia , Neurônios Motores/ultraestrutura , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Sistema Nervoso/embriologia , Neuroglia/ultraestrutura , Medula Espinal/embriologia , Peixe-Zebra , Proteínas de Peixe-Zebra/genética , Proteínas de Peixe-Zebra/metabolismo
19.
Glia ; 64(7): 1170-89, 2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-27100776

RESUMO

Radial glial cells are presumptive neural stem cells (NSCs) in the developing nervous system. The direct requirement of radial glia for the generation of a diverse array of neuronal and glial subtypes, however, has not been tested. We employed two novel transgenic zebrafish lines and endogenous markers of NSCs and radial glia to show for the first time that radial glia are essential for neurogenesis during development. By using the gfap promoter to drive expression of nuclear localized mCherry we discerned two distinct radial glial-derived cell types: a major nestin+/Sox2+ subtype with strong gfap promoter activity and a minor Sox2+ subtype lacking this activity. Fate mapping studies in this line indicate that gfap+ radial glia generate later-born CoSA interneurons, secondary motorneurons, and oligodendroglia. In another transgenic line using the gfap promoter-driven expression of the nitroreductase enzyme, we induced cell autonomous ablation of gfap+ radial glia and observed a reduction in their specific derived lineages, but not Blbp+ and Sox2+/gfap-negative NSCs, which were retained and expanded at later larval stages. Moreover, we provide evidence supporting classical roles of radial glial in axon patterning, blood-brain barrier formation, and locomotion. Our results suggest that gfap+ radial glia represent the major NSC during late neurogenesis for specific lineages, and possess diverse roles to sustain the structure and function of the spinal cord. These new tools will both corroborate the predicted roles of astroglia and reveal novel roles related to development, physiology, and regeneration in the vertebrate nervous system. GLIA 2016;64:1170-1189.


Assuntos
Proteína Glial Fibrilar Ácida/metabolismo , Neurogênese/fisiologia , Neurônios/fisiologia , Medula Espinal/citologia , Fatores Etários , Animais , Animais Geneticamente Modificados , Apoptose/genética , Diferenciação Celular , Proliferação de Células/genética , Embrião não Mamífero , Desenvolvimento Embrionário/genética , Proteína Glial Fibrilar Ácida/genética , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Locomoção/genética , Proteínas Luminescentes/genética , Proteínas Luminescentes/metabolismo , Camundongos , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Medula Espinal/embriologia , Fatores de Tempo , Peixe-Zebra , Proteínas de Peixe-Zebra/genética , Proteínas de Peixe-Zebra/metabolismo , Proteína Vermelha Fluorescente
20.
J Neurosci ; 34(38): 12762-77, 2014 Sep 17.
Artigo em Inglês | MEDLINE | ID: mdl-25232113

RESUMO

Development and maintenance of the peripheral nervous system (PNS) are essential for an organism to survive and reproduce, and damage to the PNS by disease or injury is often debilitating. Remarkably, the nerves of the PNS are capable of regenerating after trauma. However, full functional recovery after nerve injuries remains poor. Peripheral nerve regeneration has been studied extensively, with particular emphasis on elucidating the roles of Schwann cells and macrophages during degeneration and subsequent regeneration. In contrast, the roles of other essential nerve components, including perineurial glia, are poorly understood. Here, we use laser nerve transection and in vivo, time-lapse imaging in zebrafish to investigate the role and requirement of perineurial glia after nerve injury. We show that perineurial glia respond rapidly and dynamically to nerve transections by extending processes into injury sites and phagocytizing debris. Perineurial glia also bridge injury gaps before Schwann cells and axons, and we demonstrate that these bridges are essential for axon regrowth. Additionally, we show that perineurial glia and macrophages spatially coordinate early debris clearance and that perineurial glia require Schwann cells for their attraction to injury sites. This work highlights the complex nature of cell-cell interactions after injury and introduces perineurial glia as integral players in the regenerative process.


Assuntos
Axônios/fisiologia , Neurônios Motores/fisiologia , Regeneração Nervosa/fisiologia , Neuroglia/fisiologia , Traumatismos dos Nervos Periféricos/fisiopatologia , Nervos Espinhais/fisiopatologia , Animais , Animais Geneticamente Modificados , Axônios/ultraestrutura , Macrófagos/fisiologia , Neurônios Motores/ultraestrutura , Degeneração Neural/fisiopatologia , Neuroglia/ultraestrutura , Fagocitose/fisiologia , Células de Schwann/fisiologia , Nervos Espinhais/lesões , Peixe-Zebra
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA