RESUMO
RATIONALE: Compound-specific isotope analysis (CSIA) is a valuable tool in environmental chemistry and in other fields of science. Currently, hydrogen CSIA of polar compounds containing exchangeable hydrogen is uncommon. To extend the scope of CSIA applications, we present an alternative method of analysis, bypassing the typical step of derivatization. The method is demonstrated for two environmental contaminants, 4-bromophenol (4BP) and 2,4,6-tribromophenol (TBP). METHODS: Net isotope ratios obtained by CSIA combine the isotope composition of nonexchangeable, carbon-bound hydrogen and the exchangeable hydroxyl hydrogen. To constrain the isotope composition of the latter, an ethyl acetate solution of 4BP or TBP injected into the IRMS instrument was amended with excess water of known isotope composition. The results were calibrated using bracketing control samples analyzed in sequence with the unknown samples and the known isotope ratios of water present in ethyl acetate solution. RESULTS: The analytical precision was comparable to the precision for halogenated compounds without exchangeable hydrogen, analyzed using similar instrumentation. The isotope ratios of the bromophenols correlated with the isotope composition of the water in the sample matrix, suggesting that the hydroxyl group of the target compound remained close to the equilibrium with the sample water during the passage through the instrument. Based on this relationship, the signatures of the nonexchangeable hydrogen were obtained using the isotope composition of sample water as the proxy for the isotope composition of the target compound hydroxyl group. CONCLUSIONS: The developed method could be adopted to analysis of other low molecular weight compounds amenable to gas chromatography without the absolute need for derivatization. Currently, the method can be used for samples from laboratory experiments, with high concentrations of the target compound to provide mechanistic insight into the degradation mechanisms. Further work would be required to optimize the method to low concentration environmental samples.
RESUMO
Anthropogenic activities have introduced elevated levels of brominated phenols to the environment. These compounds are associated with toxic and endocrine effects, and their environmental fate is of interest. An aerobic strain Ochrobactrum sp. HI1 was isolated from soils in the vicinity of a bromophenol production plant and tested for its ability to degrade 4-bromophenol (4-BP). A ring hydroxylation pathway of degradation was proposed, using the evidence from degradation intermediates analysis and multi-element (C, Br, H) compound-specific isotope analysis. Benzenetriol and 4-bromocatechol were detected during degradation of 4-bromophenol. Degradation resulted in a normal carbon isotope effect (εC = -1.11 ± 0.09), and in insignificant bromine and hydrogen isotope fractionation. The dual C-Br isotope trend for ring hydroxylation obtained in the present study differs from the trends expected for reductive debromination or photolysis. Thus, the isotope data reported herein can be applied in future field studies to delineate aerobic biodegradation processes and differentiate them from other natural attenuation processes.
Assuntos
Clima Desértico , Ochrobactrum/metabolismo , Fenóis/metabolismo , Microbiologia do Solo , Aerobiose , Biodegradação Ambiental , Isótopos de Carbono/química , Fracionamento Químico , Fenóis/química , Filogenia , RNA Ribossômico 16S/genéticaRESUMO
1,2-Dibromethane (EDB) is a toxic fuel additive that likely occurs at many sites where leaded fuels have impacted groundwater. This study quantified carbon (C) isotope fractionation of EDB associated with anaerobic and aerobic biodegradation, abiotic degradation by iron sulfides, and abiotic hydrolysis. These processes likely contribute to EDB degradation in source zones (biodegradation) and in more dilute plumes (hydrolysis). Mixed anaerobic cultures containing dehalogenating organisms (e.g., Dehaloccoides spp.) were examined, as were aerobic cultures that degrade EDB cometabolically. Bulk C isotope enrichment factors (εbulk) associated with biological degradation covered a large range, with mixed anaerobic cultures fractionating more (εbulk from -8 to -20) than aerobic cultures (εbulk from -3 to -6). εbulk magnitudes associated with the abiotic processes (dihaloelimination by FeS/FeS2 and hydrolysis) were large but fairly well constrained (εbulk from -19 to -29). As expected, oxidative mechanisms fractionated EDB less than dihaloelimination and substitution mechanisms, and biological systems exhibited a larger range of fractionation, potentially due to isotope masking effects. In addition to quantifying and discussing εbulk values, which are highly relevant for quantifying in situ EDB degradation, an innovative approach for constraining the age of EDB in the aqueous phase, based on fractionation during hydrolysis, is described.
Assuntos
Dibrometo de Etileno , Água Subterrânea , Biodegradação Ambiental , Isótopos de Carbono , Fracionamento QuímicoRESUMO
High-temperature pyrolysis conversion of organic analytes to H(2) in hydrogen isotope ratio compound-specific isotope analysis (CSIA) is unsuitable for chlorinated compounds such as trichloroethene (TCE) and cis-1,2-dichloroethene (DCE), due to competition from HCl formation. For this reason, the information potential of hydrogen isotope ratios of chlorinated ethenes remains untapped. We present a demonstration of an alternative approach where chlorinated analytes reacted with chromium metal to form H(2) and minor amounts of HCl. The values of δ(2)H were obtained at satisfactory precision (± 10 to 15 per thousand), however the raw data required daily calibration by TCE and/or DCE standards to correct for analytical bias that varies over time. The chromium reactor has been incorporated into a purge and trap-CSIA method that is suitable for CSIA of aqueous environmental samples. A sample data set was obtained for six specimens of commercial product TCE. The resulting values of δ(2)H were between -184 and +682 , which significantly widened the range of manufactured TCE δ(2)H signatures identified by past work. The implications of this finding to the assessment of TCE contamination are discussed.
Assuntos
Etilenos/análise , Halogenação , Hidrogênio/análise , Marcação por Isótopo/métodos , Benzeno/análise , Isótopos de Carbono , Cromatografia Gasosa , Dicloroetilenos/análise , Meio Ambiente , Espectrometria de Massas , Padrões de Referência , Tricloroetileno/análise , IncertezaRESUMO
Carbon (C), chlorine (Cl), and hydrogen (H) isotope effects were determined during dechlorination of TCE to ethene by a mixed Dehalococcoides (Dhc) culture. The C isotope effects for the dechlorination steps were consistent with data published in the past for reductive dechlorination (RD) by Dhc. The Cl effects (combined with an inverse H effect in TCE) suggested that dechlorination proceeded through nucleophilic reactions with cobalamin rather than by an electron transfer mechanism. Depletions of (37)Cl in daughter compounds, resulting from fractionation at positions away from the dechlorination center (secondary isotope effects), further support the nucleophilic dechlorination mechanism. Determination of C and Cl isotope ratios of the reactants and products in the reductive dechlorination chain offers a potential tool for differentiation of Dhc activity from alternative transformation mechanisms (e.g., aerobic degradation and reductive dechlorination proceeding via outer sphere mechanisms), in studies of in situ attenuation of chlorinated ethenes. Hydrogenation of the reaction products (DCE, VC, and ethene) showed a major preference for the (1)H isotope. Detection of depleted dechlorination products could provide a line of evidence in discrimination between alternative sources of TCE (e.g., evolution from DNAPL sources or from conversion of PCE).
Assuntos
Chloroflexi/metabolismo , Etilenos/metabolismo , Tricloroetileno/metabolismo , Poluentes Químicos da Água/metabolismo , Carbono/metabolismo , Isótopos de Carbono/metabolismo , Cloro/metabolismo , Cromatografia Gasosa-Espectrometria de Massas , Hidrogênio/metabolismo , OxirreduçãoRESUMO
EDB (1,2-dibromoethane) is frequently detected at sites impacted by leaded gasoline. In reducing environments, EDB is highly susceptible to abiotic degradation. A study was conducted to evaluate the potential of compound-specific isotope analysis (CSIA) in assessing abiotic degradation of EDB in sulfate-reducing environments. Water containing EDB was incubated in sealed vials with various combinations of Na(2)S (<0.7 mM) and mackinawite (FeS) (180 mM). Degradation rates in vials containing FeS exceeded those in Na(2)S-only controls. In the presence of FeS, first-order constants ranged from 0.034 ± 0.002 d(-1) at pH 6 to 0.081 ± 0.005 d(-1) at pH 8.5. In the presence of FeS, products from reductive debromination (ethylene) and from S(N)2 substitution with S(II) nucleophiles were detected (1,2-dithioethane, DTA). Relatively high yields of DTA suggested that the S(N)2 reactions were not mediated by HS(-) only but likely also included reactions mediated by FeS surface. Significant carbon isotope effects were observed for nucleophilic substitution by HS(-) (ε = -31.6 ± 3.7) and for a combination of reductive and substitution pathways in the presence of FeS (-30.9 ± 0.7), indicating good site assessment potential of CSIA. The isotope effects (KIEs) observed in the presence of FeS corroborated the predominance of S(N)2 substitution by nucleophiles combined with two-electron transfer reductive debromination.
Assuntos
Dibrometo de Etileno/química , Compostos Ferrosos/química , Sulfeto de Hidrogênio/química , Isótopos de Carbono , Fracionamento Químico , Recuperação e Remediação Ambiental , Cinética , SolubilidadeRESUMO
At buildings with potential for vapor intrusion of volatile organic chemicals (VOCs) from the subsurface, the ability to accurately distinguish between vapor intrusion and indoor sources of VOCs is needed to support accurate and efficient vapor intrusion investigations. We have developed a method for application of compound-specific stable isotope analysis (CSIA) for this purpose that uses an adsorbent sampler to obtain sufficient sample mass from the air for analysis. Application of this method to five residences near Hill Air Force Base in Utah indicates that subsurface and indoor sources of tricholorethene and tetrachloroethene often exhibit distinct carbon and chlorine isotope ratios. The differences in isotope ratios between indoor and subsurface sources can be used to identify the source of these chemicals when they are present in indoor air.
Assuntos
Poluição do Ar em Ambientes Fechados/análise , Gases/química , Habitação , Compostos Orgânicos Voláteis/análise , Isótopos de Carbono/análise , Cloro/análise , Cloro/química , Cromatografia Gasosa-Espectrometria de Massas , Tetracloroetileno/análise , Tricloroetileno/análise , UtahRESUMO
Back-diffusion of chlorinated ethenes (CEs) from low-permeability layers (LPLs) causes contaminant persistence long after the primary spill zones have disappeared. Naturally occurring degradation in LPLs lowers remediation time frames, but its assessment through sediment sampling is prohibitive in conventional remediation projects. Scenario simulations were performed with a reactive transport model (PHT3D in FloPy) accounting for isotope effects associated with degradation, sorption, and diffusion, to evaluate the potential of CSIA data from aquifers in assessing degradation in aquitards. The model simulated a trichloroethylene (TCE) DNAPL and its pollution plume within an aquifer-aquitard-aquifer system. Sequential reductive dechlorination to ethene and sorption were uniform in the aquitard and did not occur in the aquifer. After 10â¯years of loading the aquitard through diffusion from the plume, subsequent source removal triggered release of TCE by back-diffusion. In the upper aquifer, during the loading phase, δ13C-TCE was slightly enriched (up to 2) due to diffusion effects stimulated by degradation in the aquitard. In the upper aquifer, during the release phase, (i) source removal triggered a huge δ13C increase especially for higher CEs, (ii) moreover, downstream decreasing isotope ratios (caused by downgradient later onset of the release phase) with temporal increasing isotope ratios reflect aquitard degradation (as opposed to downstream increasing and temporally constant isotope ratios in reactive aquifers), and (iii) the carbon isotope mass balance (CIMB) enriched up to 4 as lower CEs (more depleted, less sorbing) have been transported deeper into the aquitard. Thus, enriched CIMB does not indicate oxidative transformation in this system. The CIMB enrichment enhanced with more sorption and lower aquitard thickness. Thin aquitards are quicker flushed from lower CEs leading to faster CIMB enrichment over time. CIMB enrichment is smaller or nearly absent when daughter products accumulate. Aquifer CSIA patterns indicative of aquitard degradation were similar in case of linear decreasing rate constants but contrasted with previous simulations assuming a thin bioactive zone. The Rayleigh equation systematically underestimates the extent of TCE degradation in aquifer samples especially during the loading phase and for conditions leading to long remediation time frames (low groundwater flow velocity, thicker aquitards, strong sorption in the aquitard). The Rayleigh equation provides a good and useful picture on aquitard degradation during the release phase throughout the sensitivity analysis. This modelling study provides a framework on how aquifer CSIA data can inform on the occurrence of aquitard degradation and its pitfalls.
Assuntos
Água Subterrânea , Tricloroetileno , Poluentes Químicos da Água , Biodegradação Ambiental , EtilenosRESUMO
Carbon and chlorine compound specific isotope analysis (CSIA) of bis(2-chloroethyl) ether (BCEE) was performed to distinguish the primary processes contributing to observed concentration reductions in an anaerobic groundwater plume. Laboratory microcosms were constructed to demonstrate and obtain isotopic enrichment factors and dual-element CSIA trends from two potential transformation processes (1) anaerobic biodegradation using saturated sediment samples from the field site (εC=-14.8 and εCl=-5.0) and (2) abiotic reactions with sulfide nucleophiles in water (εC=-12.8 and εCl=-5.0). The results suggested a nucleophilic, SN2-type dechlorination as the mechanism of biodegradation of BCEE. Identical dual-element CSIA trends observed in the field and in the microcosm samples suggested that the same degradation mechanism was responsible for BCEE degradation in the field. While biodegradation was the likely dominant mechanism of BCEE mass destruction in the aquifer, potential contribution of abiotic hydrolysis to the net budget of degradation could not be confidently excluded. To our knowledge, this is the first unequivocal demonstration of BCEE biodegradation at a field site.
RESUMO
Reactive transport modeling of multi-element, compound-specific isotope analysis (CSIA) data has great potential to quantify sequential microbial reductive dechlorination (SRD) and alternative pathways such as oxidation, in support of remediation of chlorinated solvents in groundwater. As a key step towards this goal, a model was developed that simulates simultaneous carbon, chlorine, and hydrogen isotope fractionation during SRD of trichloroethene, via cis-1,2-dichloroethene (and trans-DCE as minor pathway), and vinyl chloride to ethene, following Monod kinetics. A simple correction term for individual isotope/isotopologue rates avoided multi-element isotopologue modeling. The model was successfully validated with data from a mixed culture Dehalococcoides microcosm. Simulation of Cl-CSIA required incorporation of secondary kinetic isotope effects (SKIEs). Assuming a limited degree of intramolecular heterogeneity of δ37Cl in TCE decreased the magnitudes of SKIEs required at the non-reacting Cl positions, without compromising the goodness of model fit, whereas a good fit of a model involving intramolecular CCl bond competition required an unlikely degree of intramolecular heterogeneity. Simulation of H-CSIA required SKIEs in H atoms originally present in the reacting compounds, especially for TCE, together with imprints of strongly depleted δ2H during protonation in the products. Scenario modeling illustrates the potential of H-CSIA for source apportionment.
Assuntos
Monitoramento Ambiental/métodos , Etilenos/análise , Água Subterrânea/química , Modelos Teóricos , Tricloroetileno/análise , Poluentes Químicos da Água/análise , Biodegradação Ambiental , Carbono/análise , Cloro/análise , Chloroflexi/metabolismo , Água Subterrânea/microbiologia , Halogenação , Hidrogênio/análise , Isótopos/análise , CinéticaRESUMO
Isotope ratios of volatile organic compounds (VOCs) in the environment are often of interest in contaminant fate studies. Adsorbent preconcentration-thermal desorption of VOCs can be used to collect environmental vapor samples for compound-specific isotope analysis (CSIA). While active adsorbent samplers offer logistic benefits in handling large volumes of air, their performance in preserving VOCs isotope ratios was not previously tested under sampling conditions corresponding to typical indoor air sampling conditions. In this study, the performance of selected adsorbents was tested for preconcentration of TCE (for determination of C and Cl isotope ratios), PCE (C and Cl) and benzene (C and H). The key objective of the study was to identify the adsorbent(s) permitting preconcentration of the target VOCs present in air at low µg/m(3) concentrations, without significant alteration of their isotope ratios. Carboxen 1016 was found to perform well for the full range of tested parameters. Carboxen 1016 can be recommended for sampling of TCE, PCE and benzene, for CSIA, from air volumes up to 100 L. Variable extent of isotope ratio alteration was observed in the preconcentration of the target VOCs on Carbopack B and Carbopack X, resulting from partial analyte loss via adsorbent bed breakthrough and (possibly) via incomplete desorption. The results from testing the Carbopack B and Carbopack X highlight the need of adsorbent performance validation at conditions fully representative of actual sample collection conditions, and caution against extrapolation of performance data toward more challenging sampling conditions.
Assuntos
Poluentes Atmosféricos/isolamento & purificação , Fracionamento Químico/instrumentação , Compostos Orgânicos Voláteis/isolamento & purificação , Adsorção , Poluentes Atmosféricos/análise , Poluentes Atmosféricos/química , Isótopos de Carbono/análise , Isótopos de Carbono/química , Isótopos de Carbono/isolamento & purificação , Fracionamento Químico/métodos , Cromatografia Gasosa-Espectrometria de Massas , Modelos Químicos , Reprodutibilidade dos Testes , Compostos Orgânicos Voláteis/análise , Compostos Orgânicos Voláteis/química , Água/químicaRESUMO
Contaminant attenuation studies utilizing CSIA (compound-specific isotope analysis) routinely assume that isotope effects (IEs) result only from degradation. Experimental results on MTBE behavior in diffusive volatilization and dynamic vapor extraction show measurable changes in the isotope ratios of the MTBE remaining in the aqueous or nonaqueous phase liquid (NAPL) matrix. A conceptual model for interpretation of those IEs is proposed, based on the physics of liquid-air partitioning. Normal or inverse IEs were observed for different volatilization scenarios. The range of carbon enrichment factors (epsilon) was from +0.7 per thousand (gasoline vapor extraction) to -1 per thousand (diffusive volatilization of MTBE from gasoline), the range of hydrogen epsilon was from +7 per thousand (gasoline vapor extraction) to -12 per thousand (air sparging of aqueous MTBE). The observed IEs are lower than those associated with MTBE degradation. However, under a realistic scenario for MTBE vapor removal, their magnitude is within the detection limits of CSIA. The potential for interference of those IEs is primarily in confusing the interpretation of samples with a small extent of fractionation and where only carbon CSIA data are available. The IEs resulting from volatilization and biodegradation, respectively, can be separated by combined carbon and hydrogen 2D-CSIA.
Assuntos
Poluentes Atmosféricos/química , Carbono/química , Deutério/química , Éteres Metílicos/química , Trítio/química , Isótopos de Carbono/química , VolatilizaçãoRESUMO
Field evidence from underground storage tank sites where leaded gasoline leaked indicates the lead scavengers 1,2-dibromoethane (ethylene dibromide, or EDB) and 1,2-dichloroethane (1,2-DCA) may be present in groundwater at levels that pose unacceptable risk. These compounds are seldom tested for at UST sites. Although dehalogenation of EDB and 1,2-DCA is well established, the effect of fuel hydrocarbons on their biodegradability under anaerobic conditions is poorly understood. Microcosms (2 L glass bottles) were prepared with soil and groundwater from a UST site in Clemson, South Carolina, using samples collected from the source (containing residual fuel) and less contaminated downgradient areas. Anaerobic biodegradation of EDB occurred in microcosms simulating natural attenuation, but was more extensive and predictable in treatments biostimulated with lactate. In the downgradient biostimulated microcosms, EDB decreased below its maximum contaminant level (MCL) (0.05 microg/L) at a first order rate of 9.4 +/- 0.2 yr(-1). The pathway for EDB dehalogenation proceeded mainly by dihaloelimination to ethene in the source microcosms, while sequential hydrogenolysis to bromoethane and ethane was predominant in the downgradient treatments. Biodegradation of EDB in the source microcosms was confirmed by carbon specific isotope analysis, with a delta13C enrichment factor of -5.6 per thousand. The highest levels of EDB removal occurred in microcosms that produced the highest amounts of methane. Extensive biodegradation of benzene, ethylbenzene, toluene and ortho-xylene was also observed in the source and downgradient area microcosms. In contrast, biodegradation of 1,2-DCA proceeded at a considerably slower rate than EDB, with no response to lactate additions. The slower biodegradation rates for 1,2-DCA agree with field observations and indicate that even if EDB is removed to below its MCL, 1,2-DCA may persist.
Assuntos
Dibrometo de Etileno/metabolismo , Dicloretos de Etileno/metabolismo , Óleos Combustíveis , Anaerobiose , Biodegradação Ambiental , Hidrocarbonetos Aromáticos/metabolismo , Isótopos , Cinética , MetanoRESUMO
Significant carbon isotope fractionation was observed during FeS-mediated reductive dechlorination of tetrachloroethylene (PCE) and trichloroethylene (TCE). Bulk enrichment factors (E(bulk)) for PCE were -30.2 +/- 4.3 per thousand (pH 7), -29.54 +/- 0.83 per thousand (pH 8), and -24.6 +/- 1.1 per thousand (pH 9). For TCE, E(bulk) values were -33.4 +/- 1.5 per thousand (pH 8) and -27.9 +/- 1.3 per thousand (pH 9). A smaller magnitude of carbon isotope fractionation resulted from microbial reductive dechlorination by two isolated pure cultures (Desulfuromonas michiganensis strain BB1 (BB1) and Sulfurospirillum multivorans (Sm)) and a bacterial consortium (BioDechlor INOCULUM (BDI)). The E(bulk) values for biological PCE microbial dechlorination were -1.39 +/- 0.21 per thousand (BB1), -1.33 +/- 0.13 per thousand (Sm), and -7.12 +/- 0.72 per thousand (BDI), while those for TCE were -4.07 +/- 0.48 per thousand (BB1), -12.8 +/- 1.6 per thousand (Sm), and -15.27 +/- 0.79 per thousand (BDI). Reactions were investigated by calculation of the apparent kinetic isotope effect for carbon (AKIEc), and the results suggest that differences in isotope fractionation for abiotic and microbial dechlorination resulted from the differences in rate-limiting steps during the dechlorination reaction. Measurement of more negative E(bulk) values at sites contaminated with PCE and TCE may suggest the occurrence of abiotic reductive dechlorination by FeS.
Assuntos
Isótopos de Carbono/metabolismo , Tetracloroetileno/farmacocinética , Tricloroetileno/farmacocinéticaRESUMO
The conventional approach to evaluate biodegradation of organic contaminants in groundwater is to demonstrate an increase in the concentration of transformation products. This approach is problematic for MTBE from gasoline spills because the primary transformation product (TBA) can also be a component of gasoline. Compound-specific stable isotope analysis may provide a useful alternative to conventional practice. Changes in the delta13C and deltaD of MTBE during biodegradation of MTBE in an anaerobic enrichment culture were compared to the delta13C and deltaD of MTBE in groundwater at nine gasoline spill-sites. The stable isotopes of hydrogen and carbon were extensively fractionated during anaerobic biodegradation of MTBE. The stable isotope enrichment factor for carbon (epsilonC) in the enrichment cultures was -13 (-14.1 to -11.9 at 95% confidence level), and the hydrogen enrichment factor (epsilonH) was -16 (-21 to -11 at 95% confidence level). The isotope enrichment factors for carbon and hydrogen during anaerobic biodegradation indicate that the first reaction is enzymatic hydrolysis of the O-Cmethyl bond. The ratio of epsilonH to epsilonC was consistent between the enrichment culture and the field site that provided the inoculum, and with the other eight sites, suggesting a common degradation pathway. Compound-specific isotope evidence is discussed in terms of its utility for monitoring in situ biodegradation, in particular, for measuring how much MTBE was degraded. For the studied field sites, significant biodegradation of the original mass of MTBE is suggested, in some cases exceeding 90%.
Assuntos
Carcinógenos/metabolismo , Éteres Metílicos/metabolismo , Poluentes do Solo/metabolismo , Poluentes Químicos da Água/metabolismo , Acidentes , Bactérias Anaeróbias , Biodegradação Ambiental , Gasolina , Hidrogênio/química , HidróliseRESUMO
Currently it is unclear if natural attenuation is an appropriate remedial approach for groundwater impacted by methyl tertiary butyl ether (MTBE). Site-characterization data at most gasoline release sites are adequate to evaluate attenuation in MTBE concentrations over time or distance. But, demonstrating natural biodegradation of MTBE requires laboratory microcosm studies, which could be expensive and time-consuming. Recently, compound-specific carbon isotope ratio analyses (13C/12C expressed in delta13C notation) have been used to demonstrate aerobic biodegradation of MTBE in laboratory incubations. This study explored the potential of this approach to distinguish MTBE biodegradation from other abiotic processes in an anaerobic groundwater plume that showed extensive decrease in MTBE concentrations. To our knowledge, this is the first study to use delta13C of MTBE data in groundwater and laboratory microcosms to demonstrate anaerobic biodegradation of MTBE. The delta13C of MTBE in monitoring wells increased by up to 31 per thousand (-25.5 per thousand to +5.5 per thousand) along with a 40-fold decrease in MTBE concentrations. Anaerobic incubations in laboratory microcosms indicated up to 20-fold reduction in MTBE concentrations with a corresponding increase in delta13C of MTBE of up to 33.4 per thousand (-28.7 per thousand to +4.7 per thousand) in live microcosms. Little enrichment was observed in autoclaved controls. These results demonstrate that anaerobic biodegradation was the dominant natural attenuation mechanism for MTBE at this site. The estimated isotopic enrichment factors (epsilon(field) = -8.10 per thousand and epsilon(lab) = -9.16 per thousand) were considerably larger than the range (-1.4 per thousand to -2.4 per thousand) previously reported for aerobic biodegradation of MTBE in laboratory incubations. These observations strongly suggest that delta13C of MTBE could be potentially useful as an "indicator" of in-situ MTBE biodegradation.