RESUMO
The use of 3D cancer models to study therapy response has a great advantage over conventional 2D cell culture. Here, we present an optimized protocol for breast cancer spheroid and rod-shaped microtissue formation using MicroTissues mold systems. We describe steps for cast formation and treating the 3D models with DNA-damaging agents. We then detail procedures for analyzing the 3D models by whole-mount immunostaining and confocal imaging of fixed samples or with the use of live-cell reporters.
RESUMO
Congenital nucleotide excision repair (NER) deficiency gives rise to several cancer-prone and/or progeroid disorders. It is not understood how defects in the same DNA repair pathway cause different disease features and severity. Here, we show that the absence of functional ERCC1-XPF or XPG endonucleases leads to stable and prolonged binding of the transcription/DNA repair factor TFIIH to DNA damage, which correlates with disease severity and induces senescence features in human cells. In vivo, in C. elegans, this prolonged TFIIH binding to non-excised DNA damage causes developmental arrest and neuronal dysfunction, in a manner dependent on transcription-coupled NER. NER factors XPA and TTDA both promote stable TFIIH DNA binding and their depletion therefore suppresses these severe phenotypical consequences. These results identify stalled NER intermediates as pathogenic to cell functionality and organismal development, which can in part explain why mutations in XPF or XPG cause different disease features than mutations in XPA or TTDA.
Assuntos
Caenorhabditis elegans , Dano ao DNA , Reparo do DNA , Proteínas de Ligação a DNA , Endonucleases , Fator de Transcrição TFIIH , Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/genética , Humanos , Animais , Fator de Transcrição TFIIH/metabolismo , Fator de Transcrição TFIIH/genética , Proteínas de Ligação a DNA/metabolismo , Proteínas de Ligação a DNA/genética , Endonucleases/metabolismo , Endonucleases/genética , Proteínas de Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/genética , Proteína de Xeroderma Pigmentoso Grupo A/metabolismo , Proteína de Xeroderma Pigmentoso Grupo A/genética , Ligação Proteica , Fatores de Transcrição/metabolismo , Fatores de Transcrição/genética , Mutação , Proteínas Nucleares/metabolismo , Proteínas Nucleares/genéticaRESUMO
Optimal treatment of cancer requires diagnostic methods to facilitate therapy choice and prevent ineffective treatments. Direct assessment of therapy response in viable tumor specimens could fill this diagnostic gap. Therefore, we designed a microfluidic platform for assessment of patient treatment response using tumor tissue slices under precisely controlled growth conditions. The optimized Cancer-on-Chip (CoC) platform maintained viability and sustained proliferation of breast and prostate tumor slices for 7 days. No major changes in tissue morphology or gene expression patterns were observed within this time frame, suggesting that the CoC system provides a reliable and effective way to probe intrinsic chemotherapeutic sensitivity of tumors. The customized CoC platform accurately predicted cisplatin and apalutamide treatment response in breast and prostate tumor xenograft models, respectively. The culture period for breast cancer could be extended up to 14 days without major changes in tissue morphology and viability. These culture characteristics enable assessment of treatment outcomes and open possibilities for detailed mechanistic studies. SIGNIFICANCE: The Cancer-on-Chip platform with a 6-well plate design incorporating silicon-based microfluidics can enable optimal patient-specific treatment strategies through parallel culture of multiple tumor slices and diagnostic assays using primary tumor material.
Assuntos
Biomarcadores Farmacológicos/química , Expressão Gênica/genética , Microfluídica/métodos , Técnicas de Cultura de Órgãos/métodos , HumanosRESUMO
PURPOSE: Current clinical classifications do not distinguish between the severity of the MICrophthalmia/Anophthalmia (MICA) spectrum with regard to treatment urgency. We aim to provide parameters for distinguishing mild, moderate and severe MICA using clinical and biometrical characteristics. METHODS: We performed a single-centre, cross-sectional analysis of prospective cohort of 58 MICA children from September 2013 to February 2018 seen at the Amsterdam University Medical Center, The Netherlands. All patients with a visible underdeveloped globe were included. We performed full ophthalmic evaluation including horizontal palpebral fissure length, axial length by ultrasound and/or MRI measurements, paediatric and genetic evaluation. Cases were subdivided based on clinical characteristics. Biometrical data were used to calculate the relative axial length (rAL) and the relative horizontal palpebral fissure length (rHPF) compared with the healthy contralateral eye for unilateral cases. RESULTS: In previously untreated patients, a strong correlation exists between rAL and rHPF, distinguishing between severe, moderate and mild subjects using rAL of 0-45%, 45-75% and 75%-100%, respectively. Clinical subgroups were randomly dispersed throughout the scatterplot. CONCLUSION: Current classifications lack clinical implications for MICA patients. We suggest measuring eyelid length and axial length to classify the severity and determine treatment strategy. The 'severe' group has obvious asymmetry and abnormal socket configuration for which therapy should quickly be initiated; the 'moderately' affected group has normal socket anatomy with a microphthalmic eye with disturbing asymmetry for which treatment should be initiated within months of development; the 'mild' group has a slightly smaller axial length or less obvious eyelid asymmetry for which reconstructive correction is possible, but expansive conformer treatment is unnecessary.
RESUMO
Liposomes are spherical, self-closed structures formed by lipid bilayers that can encapsulate drugs and/or imaging agents in their hydrophilic core or within their membrane moiety, making them suitable delivery vehicles. We have synthesized a new liposome containing gadolinium-DOTA lipid bilayer, as a targeting multimodal molecular imaging agent for magnetic resonance and optical imaging. We showed that this liposome has a much higher molar relaxivities r1 and r2 compared to a more conventional liposome containing gadolinium-DTPA-BSA lipid. By incorporating both gadolinium and rhodamine in the lipid bilayer as well as biotin on its surface, we used this agent for multimodal imaging and targeting of tumors through the strong biotin-streptavidin interaction. Since this new liposome is thermosensitive, it can be used for ultrasound-mediated drug delivery at specific sites, such as tumors, and can be guided by magnetic resonance imaging.