Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
1.
Cell ; 178(3): 585-599.e15, 2019 07 25.
Artigo em Inglês | MEDLINE | ID: mdl-31303383

RESUMO

New opportunities are needed to increase immune checkpoint blockade (ICB) benefit. Whereas the interferon (IFN)γ pathway harbors both ICB resistance factors and therapeutic opportunities, this has not been systematically investigated for IFNγ-independent signaling routes. A genome-wide CRISPR/Cas9 screen to sensitize IFNγ receptor-deficient tumor cells to CD8 T cell elimination uncovered several hits mapping to the tumor necrosis factor (TNF) pathway. Clinically, we show that TNF antitumor activity is only limited in tumors at baseline and in ICB non-responders, correlating with its low abundance. Taking advantage of the genetic screen, we demonstrate that ablation of the top hit, TRAF2, lowers the TNF cytotoxicity threshold in tumors by redirecting TNF signaling to favor RIPK1-dependent apoptosis. TRAF2 loss greatly enhanced the therapeutic potential of pharmacologic inhibition of its interaction partner cIAP, another screen hit, thereby cooperating with ICB. Our results suggest that selective reduction of the TNF cytotoxicity threshold increases the susceptibility of tumors to immunotherapy.


Assuntos
Linfócitos T CD8-Positivos/imunologia , Imunoterapia , Fator de Necrose Tumoral alfa/metabolismo , Animais , Apoptose/efeitos dos fármacos , Linfócitos T CD8-Positivos/citologia , Linfócitos T CD8-Positivos/metabolismo , Linhagem Celular Tumoral , Humanos , Proteínas Inibidoras de Apoptose/metabolismo , Interferon gama/metabolismo , Estimativa de Kaplan-Meier , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Neoplasias/mortalidade , Neoplasias/terapia , RNA Guia de Cinetoplastídeos/metabolismo , Proteína Serina-Treonina Quinases de Interação com Receptores/metabolismo , Receptores de Interferon/deficiência , Receptores de Interferon/genética , Transdução de Sinais/efeitos dos fármacos , Fator 2 Associado a Receptor de TNF/deficiência , Fator 2 Associado a Receptor de TNF/genética , Fator de Necrose Tumoral alfa/farmacologia , Receptor de Interferon gama
3.
Cell ; 133(6): 1019-31, 2008 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-18555778

RESUMO

Oncogene-induced cellular senescence (OIS) is emerging as a potent cancer-protective response to oncogenic events, serving to eliminate early neoplastic cells from the proliferative pool. Using combined genetic and bioinformatic analysis, we find that OIS is linked specifically to the activation of an inflammatory transcriptome. Induced genes included the pleiotropic cytokine interleukin-6 (IL-6), which upon secretion by senescent cells acted mitogenically in a paracrine fashion. Unexpectedly, IL-6 was also required for the execution of OIS, but in a cell-autonomous mode. Its depletion caused the inflammatory network to collapse and abolished senescence entry and maintenance. Furthermore, we demonstrate that the transcription factor C/EBPbeta cooperates with IL-6 to amplify the activation of the inflammatory network, including IL-8. In human colon adenomas, IL-8 specifically colocalized with arrested, p16(INK4A)-positive epithelium. We propose a model in which the context-dependent cytostatic and promitogenic functions of specific interleukins contribute to connect senescence with an inflammatory phenotype and cancer.


Assuntos
Senescência Celular , Inflamação , Interleucina-6/metabolismo , Adenoma/metabolismo , Proteína beta Intensificadora de Ligação a CCAAT/metabolismo , Proliferação de Células , Neoplasias do Colo/metabolismo , Inibidor de Quinase Dependente de Ciclina p15/metabolismo , Inibidor p16 de Quinase Dependente de Ciclina/metabolismo , Perfilação da Expressão Gênica , Heterocromatina , Humanos , Interleucina-8/metabolismo , Interferência de RNA , Regulação para Cima
4.
Nature ; 550(7675): 270-274, 2017 10 12.
Artigo em Inglês | MEDLINE | ID: mdl-28976960

RESUMO

Observations from cultured cells, animal models and patients raise the possibility that the dependency of tumours on the therapeutic drugs to which they have acquired resistance represents a vulnerability with potential applications in cancer treatment. However, for this drug addiction trait to become of clinical interest, we must first define the mechanism that underlies it. We performed an unbiased CRISPR-Cas9 knockout screen on melanoma cells that were both resistant and addicted to inhibition of the serine/threonine-protein kinase BRAF, in order to functionally mine their genome for 'addiction genes'. Here we describe a signalling pathway comprising ERK2 kinase and JUNB and FRA1 transcription factors, disruption of which allowed addicted tumour cells to survive on treatment discontinuation. This occurred in both cultured cells and mice and was irrespective of the acquired drug resistance mechanism. In melanoma and lung cancer cells, death induced by drug withdrawal was preceded by a specific ERK2-dependent phenotype switch, alongside transcriptional reprogramming reminiscent of the epithelial-mesenchymal transition. In melanoma cells, this reprogramming caused the shutdown of microphthalmia-associated transcription factor (MITF), a lineage survival oncoprotein; restoring this protein reversed phenotype switching and prevented the lethality associated with drug addiction. In patients with melanoma that had progressed during treatment with a BRAF inhibitor, treatment cessation was followed by increased expression of the receptor tyrosine kinase AXL, which is associated with the phenotype switch. Drug discontinuation synergized with the melanoma chemotherapeutic agent dacarbazine by further suppressing MITF and its prosurvival target, B-cell lymphoma 2 (BCL-2), and by inducing DNA damage in cancer cells. Our results uncover a pathway that underpins drug addiction in cancer cells, which may help to guide the use of alternating therapeutic strategies for enhanced clinical responses in drug-resistant cancers.


Assuntos
Antineoplásicos/farmacologia , Morte Celular/efeitos dos fármacos , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Neoplasias Pulmonares/patologia , Melanoma/patologia , Proteína Quinase 1 Ativada por Mitógeno/metabolismo , Fenótipo , Animais , Antineoplásicos/administração & dosagem , Sistemas CRISPR-Cas/genética , Linhagem Celular Tumoral , Resistencia a Medicamentos Antineoplásicos/fisiologia , Transição Epitelial-Mesenquimal , Feminino , Edição de Genes , Humanos , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/enzimologia , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Melanoma/tratamento farmacológico , Melanoma/enzimologia , Camundongos , Camundongos Knockout , Fator de Transcrição Associado à Microftalmia/metabolismo , Terapia de Alvo Molecular , Proteínas Proto-Oncogênicas B-raf/antagonistas & inibidores , Fatores de Transcrição/metabolismo
5.
EMBO J ; 34(1): 81-96, 2015 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-25371407

RESUMO

The final event of the eukaryotic cell cycle is cytokinesis, when two new daughter cells are born. How the timing and execution of cytokinesis is controlled is poorly understood. Here, we show that downregulation of cyclin-dependent kinase (Cdk) activity, together with upregulation of its counteracting phosphatase Cdc14, controls each of the sequential steps of cytokinesis, including furrow ingression, membrane resolution and cell separation in budding yeast. We use phosphoproteome analysis of mitotic exit to identify Cdk targets that are dephosphorylated at the time of cytokinesis. We then apply a new and widely applicable tool to generate conditionally phosphorylated proteins to identify those whose dephosphorylation is required for cytokinesis. This approach identifies Aip1, Ede1 and Inn1 as cytokinetic regulators. Our results suggest that cytokinesis is coordinately controlled by the master cell cycle regulator Cdk together with its counteracting phosphatase and that it is executed by concerted dephosphorylation of Cdk targets involved in several cell biological processes.


Assuntos
Proteínas de Ciclo Celular/metabolismo , Quinases Ciclina-Dependentes/metabolismo , Citocinese/fisiologia , Proteínas dos Microfilamentos/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteínas de Ciclo Celular/genética , Quinases Ciclina-Dependentes/genética , Proteínas dos Microfilamentos/genética , Fosfoproteínas/genética , Fosfoproteínas/metabolismo , Fosforilação/fisiologia , Proteínas Tirosina Fosfatases/genética , Proteínas Tirosina Fosfatases/metabolismo , Proteoma/genética , Proteoma/metabolismo , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética
6.
BMC Bioinformatics ; 19(1): 366, 2018 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-30286710

RESUMO

BACKGROUND: Mouse xenografts from (patient-derived) tumors (PDX) or tumor cell lines are widely used as models to study various biological and preclinical aspects of cancer. However, analyses of their RNA and DNA profiles are challenging, because they comprise reads not only from the grafted human cancer but also from the murine host. The reads of murine origin result in false positives in mutation analysis of DNA samples and obscure gene expression levels when sequencing RNA. However, currently available algorithms are limited and improvements in accuracy and ease of use are necessary. RESULTS: We developed the R-package XenofilteR, which separates mouse from human sequence reads based on the edit-distance between a sequence read and reference genome. To assess the accuracy of XenofilteR, we generated sequence data by in silico mixing of mouse and human DNA sequence data. These analyses revealed that XenofilteR removes > 99.9% of sequence reads of mouse origin while retaining human sequences. This allowed for mutation analysis of xenograft samples with accurate variant allele frequencies, and retrieved all non-synonymous somatic tumor mutations. CONCLUSIONS: XenofilteR accurately dissects RNA and DNA sequences from mouse and human origin, thereby outperforming currently available tools. XenofilteR is open source and available at https://github.com/PeeperLab/XenofilteR .


Assuntos
Sequenciamento de Nucleotídeos em Larga Escala/métodos , Animais , Computadores , Bases de Dados Genéticas , Humanos , Camundongos
7.
PLoS Genet ; 11(1): e1004907, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25569132

RESUMO

Substrate dephosphorylation by the cyclin-dependent kinase (Cdk)-opposing phosphatase, Cdc14, is vital for many events during budding yeast mitotic exit. Cdc14 is sequestered in the nucleolus through inhibitory binding to Net1, from which it is released in anaphase following Net1 phosphorylation. Initial Net1 phosphorylation depends on Cdk itself, in conjunction with proteins of the Cdc14 Early Anaphase Release (FEAR) network. Later on, the Mitotic Exit Network (MEN) signaling cascade maintains Cdc14 release. An important unresolved question is how Cdc14 activity can increase in early anaphase, while Cdk activity, that is required for Net1 phosphorylation, decreases and the MEN is not yet active. Here we show that the nuclear rim protein Nur1 interacts with Net1 and, in its Cdk phosphorylated form, inhibits Cdc14 release. Nur1 is dephosphorylated by Cdc14 in early anaphase, relieving the inhibition and promoting further Cdc14 release. Nur1 dephosphorylation thus describes a positive feedback loop in Cdc14 phosphatase activation during mitotic exit, required for faithful chromosome segregation and completion of the cell division cycle.


Assuntos
Proteínas de Ciclo Celular/genética , Segregação de Cromossomos/genética , Proteínas de Membrana/genética , Mitose/genética , Proteínas Nucleares/genética , Proteínas Tirosina Fosfatases/genética , Proteínas de Saccharomyces cerevisiae/genética , Anáfase , Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Retroalimentação Fisiológica , Proteínas Nucleares/metabolismo , Fosforilação/genética , Proteínas Tirosina Fosfatases/metabolismo , Saccharomyces cerevisiae , Proteínas de Saccharomyces cerevisiae/metabolismo , Transdução de Sinais/genética
8.
Proc Natl Acad Sci U S A ; 112(43): 13308-11, 2015 Oct 27.
Artigo em Inglês | MEDLINE | ID: mdl-26460009

RESUMO

Tumor organoids are 3D cultures of cancer cells. They can be derived from the tumor of each individual patient, thereby providing an attractive ex vivo assay to tailor treatment. Using patient-derived tumor organoids for this purpose requires that organoids derived from biopsies maintain the genetic diversity of the in vivo tumor. In this study tumor biopsies were obtained from 14 patients with metastatic colorectal cancer (i) to test the feasibility of organoid culture from metastatic biopsy specimens and (ii) to compare the genetic diversity of patient-derived tumor organoids and the original tumor biopsy. Genetic analysis was performed using SOLiD sequencing for 1,977 cancer-relevant genes. Copy number profiles were generated from sequencing data using CopywriteR. Here we demonstrate that organoid cultures can be established from tumor biopsies of patients with metastatic colorectal cancer with a success rate of 71%. Genetic analysis showed that organoids reflect the metastasis from which they were derived. Ninety percent of somatic mutations were shared between organoids and biopsies from the same patient, and the DNA copy number profiles of organoids and the corresponding original tumor show a correlation of 0.89. Most importantly, none of the mutations that were found exclusively in either the tumor or organoid culture are in driver genes or genes amenable for drug targeting. These findings support further exploration of patient-derived organoids as an ex vivo platform to personalize anticancer treatment.


Assuntos
Técnicas de Cultura de Células/métodos , Neoplasias Colorretais/genética , Variação Genética/genética , Metástase Neoplásica/genética , Organoides/citologia , Organoides/crescimento & desenvolvimento , Protocolos Antineoplásicos/normas , Sequência de Bases , Neoplasias Colorretais/tratamento farmacológico , Genes Neoplásicos/genética , Humanos , Dados de Sequência Molecular , Organoides/química , Medicina de Precisão/métodos , Análise de Sequência de DNA
9.
Genes Dev ; 24(22): 2463-79, 2010 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-21078816

RESUMO

Almost half a century after the first reports describing the limited replicative potential of primary cells in culture, there is now overwhelming evidence for the existence of "cellular senescence" in vivo. It is being recognized as a critical feature of mammalian cells to suppress tumorigenesis, acting alongside cell death programs. Here, we review the various features of cellular senescence and discuss their contribution to tumor suppression. Additionally, we highlight the power and limitations of the biomarkers currently used to identify senescent cells in vitro and in vivo.


Assuntos
Senescência Celular/fisiologia , Animais , Biomarcadores/análise , Células/citologia , Humanos , Neoplasias/fisiopatologia
10.
Mol Cancer Res ; 21(5): 428-443, 2023 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-36753617

RESUMO

High expression of the receptor tyrosine kinase AXL is implicated in epithelial-to-mesenchymal transition, cancer progression, and therapy resistance. For example, AXL is abundant in BRAF mutant melanomas progressing on targeted BRAF/MEK inhibition. Therefore, AXL is thought to represent an attractive therapeutic target. This notwithstanding, little is known about the mechanisms governing expression of AXL. Here, we describe a FACS-based whole-genome-wide CRISPR-Cas9 screen to uncover regulators of AXL expression. We identified several genes, inactivation of which led to increased AXL expression. Most remarkable was the identification of five components that associate with the Elongin BC heterodimer. Elongin B/C engage in multiple protein-protein interactions, including the transcription factor complex subunit Elongin A, the von Hippel-Lindau (VHL) tumor suppressor protein, and members of the SOCS-box protein family. The screen identified ELOB, ELOC, SOCS5, UBE2F, and RNF7, each of which we demonstrate to serve as an inhibitor of AXL expression. Although the AXL promoter contains hypoxia response elements and Elongin B/C are found in the VHL complex, Elongin B/C unexpectedly regulate AXL independently of hypoxia. Instead, we demonstrate that the Elongin BC complex interacts with AXL through ELOB, and contributes to proteasomal AXL turnover. RNA-sequencing and IHC analyses of melanoma patient-derived xenografts and clinical samples revealed a negative association between Elongin B/C and dedifferentiation. Together, the Elongin BC complex regulates AXL and marks a differentiated melanoma phenotype. IMPLICATIONS: This study identifies the Elongin BC complex as a key regulator of AXL expression and marker of melanoma differentiation.


Assuntos
Melanoma , Ubiquitina-Proteína Ligases , Humanos , Elonguina , Melanoma/genética , Complexo de Endopeptidases do Proteassoma , Proteínas Proto-Oncogênicas B-raf , Fatores de Transcrição/genética , Proteína Supressora de Tumor Von Hippel-Lindau , Receptores Proteína Tirosina Quinases/metabolismo
11.
Cell Rep Med ; 4(2): 100941, 2023 02 21.
Artigo em Inglês | MEDLINE | ID: mdl-36812891

RESUMO

By restoring tryptophan, indoleamine 2,3-dioxygenase 1 (IDO1) inhibitors aim to reactivate anti-tumor T cells. However, a phase III trial assessing their clinical benefit failed, prompting us to revisit the role of IDO1 in tumor cells under T cell attack. We show here that IDO1 inhibition leads to an adverse protection of melanoma cells to T cell-derived interferon-gamma (IFNγ). RNA sequencing and ribosome profiling shows that IFNγ shuts down general protein translation, which is reversed by IDO1 inhibition. Impaired translation is accompanied by an amino acid deprivation-dependent stress response driving activating transcription factor-4 (ATF4)high/microphtalmia-associated transcription factor (MITF)low transcriptomic signatures, also in patient melanomas. Single-cell sequencing analysis reveals that MITF downregulation upon immune checkpoint blockade treatment predicts improved patient outcome. Conversely, MITF restoration in cultured melanoma cells causes T cell resistance. These results highlight the critical role of tryptophan and MITF in the melanoma response to T cell-derived IFNγ and uncover an unexpected negative consequence of IDO1 inhibition.


Assuntos
Melanoma , Triptofano , Humanos , Melanoma/patologia , Interferon gama/metabolismo , Linfócitos T/metabolismo , Indolamina-Pirrol 2,3,-Dioxigenase/genética
12.
Oncoimmunology ; 11(1): 2139074, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36465485

RESUMO

Immunotherapies, in particular immune checkpoint blockade (ICB), have improved the clinical outcome of cancer patients, although many fail to mount a durable response. Several resistance mechanisms have been identified, but our understanding of the requirements for a robust ICB response is incomplete. We have engineered an MHC I/antigen: TCR-matched panel of human NSCLC cancer and T cells to identify tumor cell-intrinsic T cell resistance mechanisms. The top differentially expressed gene in resistant tumor cells was SERPINB9. This serine protease inhibitor of the effector T cell-derived molecule granzyme B prevents caspase-mediated tumor apoptosis. Concordantly, we show that genetic ablation of SERPINB9 reverts T cell resistance of NSCLC cell lines, whereas its overexpression reduces T cell sensitivity. SERPINB9 expression in NSCLC strongly correlates with a mesenchymal phenotype. We also find that SERPINB9 is commonly amplified in cancer, particularly melanoma in which it is indicative of poor prognosis. Single-cell RNA sequencing of ICB-treated melanomas revealed that SERPINB9 expression is elevated not only in cells from post- versus pre-treatment cancers, but also in ICB-refractory cancers. In NSCLC we commonly observed rare SERPINB9-positive cancer cells, possibly accounting for reservoirs of ICB-resistant cells. While underscoring SERPINB9 as a potential target to combat immunotherapy resistance, these results suggest its potential to serve as a prognostic and predictive biomarker.


Assuntos
Resistencia a Medicamentos Antineoplásicos , Inibidores de Checkpoint Imunológico , Neoplasias , Serpinas , Humanos , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Carcinoma Pulmonar de Células não Pequenas/genética , Inibidores de Checkpoint Imunológico/farmacologia , Inibidores de Checkpoint Imunológico/uso terapêutico , Imunoterapia , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/genética , Melanoma/tratamento farmacológico , Melanoma/genética , Inibidores de Serina Proteinase/genética , Serpinas/genética , Resistencia a Medicamentos Antineoplásicos/genética , Neoplasias Cutâneas , Neoplasias/genética
13.
Cell Rep Med ; 3(6): 100655, 2022 06 21.
Artigo em Inglês | MEDLINE | ID: mdl-35688159

RESUMO

Tumor escape mechanisms for immunotherapy include deficiencies in antigen presentation, diminishing adaptive CD8+ T cell antitumor activity. Although innate natural killer (NK) cells are triggered by loss of MHC class I, their response is often inadequate. To increase tumor susceptibility to both innate and adaptive immune elimination, we performed parallel genome-wide CRISPR-Cas9 knockout screens under NK and CD8+ T cell pressure. We identify all components, RNF31, RBCK1, and SHARPIN, of the linear ubiquitination chain assembly complex (LUBAC). Genetic and pharmacologic ablation of RNF31, an E3 ubiquitin ligase, strongly sensitizes cancer cells to NK and CD8+ T cell killing. This occurs in a tumor necrosis factor (TNF)-dependent manner, causing loss of A20 and non-canonical IKK complexes from TNF receptor complex I. A small-molecule RNF31 inhibitor sensitizes colon carcinoma organoids to TNF and greatly enhances bystander killing of MHC antigen-deficient tumor cells. These results merit exploration of RNF31 inhibition as a clinical pharmacological opportunity for immunotherapy-refractory cancers.


Assuntos
Evasão Tumoral , Ubiquitina-Proteína Ligases , Células Matadoras Naturais , Fator de Necrose Tumoral alfa/metabolismo , Ubiquitina-Proteína Ligases/genética , Ubiquitinação
14.
Nature ; 436(7051): 720-4, 2005 Aug 04.
Artigo em Inglês | MEDLINE | ID: mdl-16079850

RESUMO

Most normal mammalian cells have a finite lifespan, thought to constitute a protective mechanism against unlimited proliferation. This phenomenon, called senescence, is driven by telomere attrition, which triggers the induction of tumour suppressors including p16(INK4a) (ref. 5). In cultured cells, senescence can be elicited prematurely by oncogenes; however, whether such oncogene-induced senescence represents a physiological process has long been debated. Human naevi (moles) are benign tumours of melanocytes that frequently harbour oncogenic mutations (predominantly V600E, where valine is substituted for glutamic acid) in BRAF, a protein kinase and downstream effector of Ras. Nonetheless, naevi typically remain in a growth-arrested state for decades and only rarely progress into malignancy (melanoma). This raises the question of whether naevi undergo BRAF(V600E)-induced senescence. Here we show that sustained BRAF(V600E) expression in human melanocytes induces cell cycle arrest, which is accompanied by the induction of both p16(INK4a) and senescence-associated acidic beta-galactosidase (SA-beta-Gal) activity, a commonly used senescence marker. Validating these results in vivo, congenital naevi are invariably positive for SA-beta-Gal, demonstrating the presence of this classical senescence-associated marker in a largely growth-arrested, neoplastic human lesion. In growth-arrested melanocytes, both in vitro and in situ, we observed a marked mosaic induction of p16(INK4a), suggesting that factors other than p16(INK4a) contribute to protection against BRAF(V600E)-driven proliferation. Naevi do not appear to suffer from telomere attrition, arguing in favour of an active oncogene-driven senescence process, rather than a loss of replicative potential. Thus, both in vitro and in vivo, BRAF(V600E)-expressing melanocytes display classical hallmarks of senescence, suggesting that oncogene-induced senescence represents a genuine protective physiological process.


Assuntos
Ciclo Celular , Senescência Celular , Nevo/metabolismo , Nevo/patologia , Proteínas Proto-Oncogênicas B-raf/genética , Proteínas Proto-Oncogênicas B-raf/metabolismo , Linhagem Celular , Proliferação de Células , Inibidor p16 de Quinase Dependente de Ciclina/deficiência , Inibidor p16 de Quinase Dependente de Ciclina/genética , Inibidor p16 de Quinase Dependente de Ciclina/metabolismo , Fibroblastos , Humanos , Hibridização in Situ Fluorescente , Lactente , Melanócitos/patologia , Nevo/congênito , Nevo/genética , Telômero/genética , Telômero/metabolismo , beta-Galactosidase/metabolismo
15.
Clin Cancer Res ; 27(19): 5389-5400, 2021 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-34230026

RESUMO

PURPOSE: Combining anti-PD-1 + anti-CTLA-4 immune-checkpoint blockade (ICB) shows improved patient benefit, but it is associated with severe immune-related adverse events and exceedingly high cost. Therefore, there is a dire need to predict which patients respond to monotherapy and which require combination ICB treatment. EXPERIMENTAL DESIGN: In patient-derived melanoma xenografts (PDX), human tumor microenvironment (TME) cells were swiftly replaced by murine cells upon transplantation. Using our XenofilteR deconvolution algorithm we curated human tumor cell RNA reads, which were subsequently subtracted in silico from bulk (tumor cell + TME) patients' melanoma RNA. This produced a purely tumor cell-intrinsic signature ("InTumor") and a signature comprising tumor cell-extrinsic RNA reads ("ExTumor"). RESULTS: We show that whereas the InTumor signature predicts response to anti-PD-1, the ExTumor predicts anti-CTLA-4 benefit. In PDX, InTumorLO, but not InTumorHI, tumors are effectively eliminated by cytotoxic T cells. When used in conjunction, the InTumor and ExTumor signatures identify not only patients who have a substantially higher chance of responding to combination treatment than to either monotherapy, but also those who are likely to benefit little from anti-CTLA-4 on top of anti-PD-1. CONCLUSIONS: These signatures may be exploited to distinguish melanoma patients who need combination ICB blockade from those who likely benefit from either monotherapy.


Assuntos
Melanoma , Receptor de Morte Celular Programada 1 , Animais , Antígeno CTLA-4 , Humanos , Inibidores de Checkpoint Imunológico , Melanoma/tratamento farmacológico , Melanoma/genética , Camundongos , Receptor de Morte Celular Programada 1/uso terapêutico , RNA , Microambiente Tumoral
16.
PLoS One ; 14(5): e0216864, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31125352

RESUMO

BACKGROUND: In non-small cell lung cancer (NSCLC), PD-L1 expression on either tumor cells (TC) or both TC and tumor-infiltrating immune cells (IC) is currently the most used biomarker in cancer immunotherapy. However, the mechanisms involved in PD-L1 regulation are not fully understood. To provide better insight in these mechanisms, a multiangular analysis approach was used to combine protein and mRNA expression with several clinicopathological characteristics. PATIENTS AND METHODS: Archival tissues from 640 early stage, resected NSCLC patients were analyzed with immunohistochemistry for expression of PD-L1 and CD8 infiltration. In addition, mutational status and expression of a selection of immune genes involved in the PD-L1/PD-1 axis and T-cell response was determined. RESULTS: Tumors with high PD-L1 expression on TC or on IC represent two subsets of NSCLC with minimal overlap. We observed that PD-L1 expression on IC irrespective of expression on TC is a good marker for inflammation within tumors. In the tumors with the highest IC expression and absent TC expression an association with reduced IFNγ downstream signaling in tumor cells was observed. CONCLUSIONS: These results show that PD-L1 expression on TC and IC are both independent hallmarks of the inflamed phenotype in NSCLC, and TC-negative/IC-high tumors can also be categorized as inflamed. The lack of correlation between PD-L1 TC and IC expression in this subgroup may be caused by impaired IFNγ signaling in tumor cells. These findings may bring a better understanding of the tumor-immune system interaction and the clinical relevance of PD-L1 expression on IC irrespective of PD-L1 expression on TC.


Assuntos
Antígeno B7-H1/imunologia , Linfócitos T CD8-Positivos/imunologia , Carcinoma Pulmonar de Células não Pequenas/imunologia , Regulação Neoplásica da Expressão Gênica/imunologia , Imunidade Celular , Interferon gama/imunologia , Neoplasias Pulmonares/imunologia , Proteínas de Neoplasias/imunologia , Transdução de Sinais/imunologia , Adulto , Idoso , Idoso de 80 Anos ou mais , Antígeno B7-H1/genética , Linfócitos T CD8-Positivos/patologia , Carcinoma Pulmonar de Células não Pequenas/genética , Carcinoma Pulmonar de Células não Pequenas/patologia , Feminino , Humanos , Interferon gama/genética , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patologia , Masculino , Pessoa de Meia-Idade , Proteínas de Neoplasias/genética , Estadiamento de Neoplasias , Receptor de Morte Celular Programada 1/genética , Receptor de Morte Celular Programada 1/imunologia , Transdução de Sinais/genética
17.
Nat Med ; 24(2): 203-212, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-29334371

RESUMO

Intratumor heterogeneity is a key factor contributing to therapeutic failure and, hence, cancer lethality. Heterogeneous tumors show partial therapy responses, allowing for the emergence of drug-resistant clones that often express high levels of the receptor tyrosine kinase AXL. In melanoma, AXL-high cells are resistant to MAPK pathway inhibitors, whereas AXL-low cells are sensitive to these inhibitors, rationalizing a differential therapeutic approach. We developed an antibody-drug conjugate, AXL-107-MMAE, comprising a human AXL antibody linked to the microtubule-disrupting agent monomethyl auristatin E. We found that AXL-107-MMAE, as a single agent, displayed potent in vivo anti-tumor activity in patient-derived xenografts, including melanoma, lung, pancreas and cervical cancer. By eliminating distinct populations in heterogeneous melanoma cell pools, AXL-107-MMAE and MAPK pathway inhibitors cooperatively inhibited tumor growth. Furthermore, by inducing AXL transcription, BRAF/MEK inhibitors potentiated the efficacy of AXL-107-MMAE. These findings provide proof of concept for the premise that rationalized combinatorial targeting of distinct populations in heterogeneous tumors may improve therapeutic effect, and merit clinical validation of AXL-107-MMAE in both treatment-naive and drug-resistant cancers in mono- or combination therapy.


Assuntos
Imunoconjugados/farmacologia , Melanoma/tratamento farmacológico , Proteínas Proto-Oncogênicas B-raf/genética , Proteínas Proto-Oncogênicas/imunologia , Receptores Proteína Tirosina Quinases/imunologia , Animais , Linhagem Celular Tumoral , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Resistencia a Medicamentos Antineoplásicos/imunologia , Heterogeneidade Genética/efeitos dos fármacos , Humanos , Imunoconjugados/imunologia , Melanoma/genética , Melanoma/imunologia , Melanoma/patologia , Camundongos , Oligopeptídeos/química , Oligopeptídeos/imunologia , Oligopeptídeos/farmacologia , Inibidores de Proteínas Quinases/química , Inibidores de Proteínas Quinases/imunologia , Inibidores de Proteínas Quinases/farmacologia , Proteínas Proto-Oncogênicas/química , Proteínas Proto-Oncogênicas/farmacologia , Proteínas Proto-Oncogênicas B-raf/antagonistas & inibidores , Proteínas Proto-Oncogênicas B-raf/imunologia , Receptores Proteína Tirosina Quinases/química , Receptores Proteína Tirosina Quinases/farmacologia , Ensaios Antitumorais Modelo de Xenoenxerto , Receptor Tirosina Quinase Axl
18.
Oncotarget ; 7(23): 33901-18, 2016 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-27129152

RESUMO

Estrogen receptor alpha (ERα)-positive breast cancers are frequently treated with tamoxifen, but resistance is common. It remains elusive how tamoxifen resistance occurs and predictive biomarkers for treatment outcome are needed. Because most biomarker discovery studies are performed using pre-treatment surgical resections, the effects of tamoxifen therapy directly on the tumor cell in vivo remain unexamined. In this study, we assessed DNA copy number, gene expression profiles and ERα/chromatin binding landscapes on breast tumor specimens, both before and after neoadjuvant tamoxifen treatment. We observed neoadjuvant tamoxifen treatment synchronized ERα/chromatin interactions and downstream gene expression, indicating that hormonal therapy reduces inter-tumor molecular variability. ERα-synchronized sites are associated with dynamic FOXA1 action at these sites, which is under control of growth factor signaling. Genes associated with tamoxifen-synchronized sites are capable of differentiating patients for tamoxifen benefit. Due to the direct effects of therapeutics on ERα behavior and transcriptional output, our study highlights the added value of biomarker discovery studies after neoadjuvant drug exposure.


Assuntos
Neoplasias da Mama/tratamento farmacológico , Proliferação de Células/efeitos dos fármacos , Cromatina/metabolismo , Receptor alfa de Estrogênio/efeitos dos fármacos , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Terapia Neoadjuvante , Moduladores Seletivos de Receptor Estrogênico/administração & dosagem , Tamoxifeno/administração & dosagem , Transcriptoma/efeitos dos fármacos , Adulto , Idoso , Biomarcadores Tumorais/genética , Biomarcadores Tumorais/metabolismo , Neoplasias da Mama/genética , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Proliferação de Células/genética , Quimioterapia Adjuvante , Cromatina/genética , Variações do Número de Cópias de DNA , Receptor alfa de Estrogênio/genética , Receptor alfa de Estrogênio/metabolismo , Feminino , Dosagem de Genes , Perfilação da Expressão Gênica/métodos , Fator 3-alfa Nuclear de Hepatócito/genética , Fator 3-alfa Nuclear de Hepatócito/metabolismo , Humanos , Células MCF-7 , Pessoa de Meia-Idade , Países Baixos , Seleção de Pacientes , Medicina de Precisão , Valor Preditivo dos Testes , Ligação Proteica , Fatores de Tempo , Transcrição Gênica , Resultado do Tratamento
19.
Cell Rep ; 16(3): 631-43, 2016 07 19.
Artigo em Inglês | MEDLINE | ID: mdl-27373156

RESUMO

Small cell lung cancer (SCLC) is an aggressive neuroendocrine tumor, and no effective treatment is available to date. Mouse models of SCLC based on the inactivation of Rb1 and Trp53 show frequent amplifications of the Nfib and Mycl genes. Here, we report that, although overexpression of either transcription factor accelerates tumor growth, NFIB specifically promotes metastatic spread. High NFIB levels are associated with expansive growth of a poorly differentiated and almost exclusively E-cadherin (CDH1)-negative invasive tumor cell population. Consistent with the mouse data, we find that NFIB is overexpressed in almost all tested human metastatic high-grade neuroendocrine lung tumors, warranting further assessment of NFIB as a tumor progression marker in a clinical setting.


Assuntos
Biomarcadores Tumorais/metabolismo , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patologia , Fatores de Transcrição NFI/metabolismo , Carcinoma de Pequenas Células do Pulmão/metabolismo , Carcinoma de Pequenas Células do Pulmão/patologia , Animais , Caderinas/metabolismo , Proliferação de Células/fisiologia , Modelos Animais de Doenças , Progressão da Doença , Regulação Neoplásica da Expressão Gênica/fisiologia , Humanos , Camundongos , Metástase Neoplásica/patologia , Proteínas Proto-Oncogênicas c-myc/metabolismo , Proteína do Retinoblastoma/metabolismo , Proteína Supressora de Tumor p53/metabolismo
20.
Cell Rep ; 16(1): 263-277, 2016 06 28.
Artigo em Inglês | MEDLINE | ID: mdl-27320919

RESUMO

The therapeutic landscape of melanoma is improving rapidly. Targeted inhibitors show promising results, but drug resistance often limits durable clinical responses. There is a need for in vivo systems that allow for mechanistic drug resistance studies and (combinatorial) treatment optimization. Therefore, we established a large collection of patient-derived xenografts (PDXs), derived from BRAF(V600E), NRAS(Q61), or BRAF(WT)/NRAS(WT) melanoma metastases prior to treatment with BRAF inhibitor and after resistance had occurred. Taking advantage of PDXs as a limitless source, we screened tumor lysates for resistance mechanisms. We identified a BRAF(V600E) protein harboring a kinase domain duplication (BRAF(V600E/DK)) in ∼10% of the cases, both in PDXs and in an independent patient cohort. While BRAF(V600E/DK) depletion restored sensitivity to BRAF inhibition, a pan-RAF dimerization inhibitor effectively eliminated BRAF(V600E/DK)-expressing cells. These results illustrate the utility of this PDX platform and warrant clinical validation of BRAF dimerization inhibitors for this group of melanoma patients.


Assuntos
Duplicação Gênica , Melanoma/tratamento farmacológico , Melanoma/genética , Proteínas Proto-Oncogênicas B-raf/química , Proteínas Proto-Oncogênicas B-raf/genética , Ensaios Antitumorais Modelo de Xenoenxerto , Animais , Biomarcadores Tumorais/metabolismo , Linhagem Celular Tumoral , Aberrações Cromossômicas , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Regulação Neoplásica da Expressão Gênica , Humanos , Indóis/farmacologia , Indóis/uso terapêutico , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Melanoma/patologia , Camundongos , Mutação/genética , Metástase Neoplásica , Domínios Proteicos , Multimerização Proteica , Reprodutibilidade dos Testes , Sulfonamidas/farmacologia , Sulfonamidas/uso terapêutico , Vemurafenib
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA