Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Int J Mol Sci ; 23(18)2022 Sep 17.
Artigo em Inglês | MEDLINE | ID: mdl-36142768

RESUMO

A (series) range of potential dimorpholinoquinazoline-based inhibitors of the PI3K/Akt/mTOR cascade was synthesized. Several compounds exhibited cytotoxicity towards a panel of cancer cell lines in the low and sub-micromolar range. Compound 7c with the highest activity and moderate selectivity towards MCF7 cells which express the mutant type of PI3K was also tested for the ability to inhibit PI3K-(signaling pathway) downstream effectors and associated proteins. Compound 7c inhibited the phosphorylation of Akt, mTOR, and S6K at 125-250 nM. It also triggered PARP1 cleavage, ROS production, and cell death via several mechanisms. Inhibition of PI3Kα was observed at a concentration of 7b 50 µM and of 7c 500 µM and higher, that can indicate minority PI3Kα as a target among other kinases in the titled cascade for 7c. In vivo studies demonstrated an inhibition of tumor growth in the colorectal tumor model. According to the docking studies, the replacement of the triazine core in gedatolisib (8) by a quinazoline fragment, and incorporation of a (hetero)aromatic unit connected with the carbamide group via a flexible spacer, can result in more selective inhibition of the PI3Kα isoform.


Assuntos
Fosfatidilinositol 3-Quinases , Proteínas Proto-Oncogênicas c-akt , Linhagem Celular Tumoral , Proliferação de Células , Simulação de Acoplamento Molecular , Fosfatidilinositol 3-Quinases/metabolismo , Inibidores de Proteínas Quinases/farmacologia , Proteínas Proto-Oncogênicas c-akt/metabolismo , Quinazolinas/farmacologia , Espécies Reativas de Oxigênio , Serina-Treonina Quinases TOR/metabolismo , Triazinas/farmacologia , Ureia
2.
Molecules ; 25(14)2020 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-32664504

RESUMO

Tankyrase enzymes (TNKS), a core part of the canonical Wnt pathway, are a promising target in the search for potential anti-cancer agents. Although several hundreds of the TNKS inhibitors are currently known, identification of their novel chemotypes attracts considerable interest. In this study, the molecular docking and machine learning-based virtual screening techniques combined with the physico-chemical and ADMET (absorption, distribution, metabolism, excretion, toxicity) profile prediction and molecular dynamics simulations were applied to a subset of the ZINC database containing about 1.7 M commercially available compounds. Out of seven candidate compounds biologically evaluated in vitro for their inhibition of the TNKS2 enzyme using immunochemical assay, two compounds have shown a decent level of inhibitory activity with the IC50 values of less than 10 nM and 10 µM. Relatively simple scores based on molecular docking or MM-PBSA (molecular mechanics, Poisson-Boltzmann, surface area) methods proved unsuitable for predicting the effect of structural modification or for accurate ranking of the compounds based on their binding energies. On the other hand, the molecular dynamics simulations and Free Energy Perturbation (FEP) calculations allowed us to further decipher the structure-activity relationships and retrospectively analyze the docking-based virtual screening performance. This approach can be applied at the subsequent lead optimization stages.


Assuntos
Inibidores Enzimáticos , Tanquirases , Sítios de Ligação , Descoberta de Drogas , Inibidores Enzimáticos/química , Humanos , Simulação de Dinâmica Molecular , Estrutura Molecular , Ligação Proteica , Relação Estrutura-Atividade , Tanquirases/antagonistas & inibidores , Tanquirases/química
3.
Mol Cell Biochem ; 352(1-2): 231-8, 2011 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-21380727

RESUMO

Mannose-binding lectin was identified as a substrate of tankyrase 2, an enzyme that catalyzes poly(ADP-ribosyl)ation. The endogenous tankyrase 2 was isolated out of cytoplasm of human embryonic kidney cells. It was bound to a soluble complex of at least two other proteins; they were identified using specific antibodies and other approaches as keratin 1 and mannose-binding lectin. Using immunoblot analysis and radioactive labeling, we detected tankyrase-2-dependent poly(ADP-ribosyl)ation of mannose-binding lectin. In the presence of NAD(+), the complex of keratin 1 and lectin was dissociated, what was recorded during elution of its separate components out of affinity columns and by decrease of their apparent molecular masses during gel-filtration. Tankyrase 2 also inhibited the carbohydrate-binding function of the lectin. The latter effect was observed using mannose-binding lectin out of human serum, which is free from keratin 1. As a result of tankyrase-2 activity, the lectin lost its affinity to mannan-agarose. The discovery of this new biochemical mechanism justifies further analysis of its physiological and medical significance.


Assuntos
Rim/metabolismo , Lectina de Ligação a Manose/metabolismo , Poli Adenosina Difosfato Ribose/metabolismo , Western Blotting , Linhagem Celular , Cromatografia de Afinidade/métodos , Eletroforese em Gel de Poliacrilamida , Humanos , Rim/citologia , Espectrometria de Massas
4.
Russ J Immunol ; 5(3): 259-266, 2000 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-12687180

RESUMO

Lymphotoxins alpha and beta (LTalpha and LTbeta) are members of tumor necrosis factor superfamily. LT heterotrimers exist on the surface of lymphocytes and signal through LTbeta receptor while soluble LTalpha homotrimer can signal through TNF receptors p55 and p75. LT-, as well as TNF-mediated signaling are important for the organogenesis and maintenance of microarchitecture of secondary lymphoid organs in mice and has been implicated in the mechanism of certain inflammatory syndromes in humans. In this study we describe the generation of eukaryotic expression plasmids encoding murine LTalpha and LTbeta genes and a prokaryotic expression construct for murine LTalpha. Using recombinant proteins expressed by these vectors as tools for antisera selection, we produced and characterized several polyclonal antibodies capable of detecting LT proteins in eukaryotic cells.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA