Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Int J Mol Sci ; 23(5)2022 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-35270014

RESUMO

Oxidative stress (OS) mediators, together with the inflammatory processes, are considered as threatening factors for bone health. The aim of this study was to investigate effects of flavonoids naringenin and chrysin on OS, inflammation, and bone degradation in retinoic acid (13cRA)-induced secondary osteoporosis (OP) in rats. We analysed changes in body and uterine weight, biochemical bone parameters (bone mineral density (BMD), bone mineral content (BMC), markers of bone turnover), bone geometry parameters, bone histology, OS parameters, biochemical and haematological parameters, and levels of inflammatory cytokines. Osteoporotic rats had reduced bone Ca and P levels, BMD, BMC, and expression of markers of bone turnover, and increased values of serum enzymes alkaline phosphatase (ALP) and lactate dehydrogenase (LDH). Malondialdehyde (MDA) production in liver, kidney, and ovary was increased, while the glutathione (GSH) content and activities of antioxidant enzymes were reduced and accompanied with the enhanced release of inflammatory mediators TNF-α, IL-1ß, IL-6, and RANTES chemokine (regulated on activation normal T cell expressed and secreted) in serum. Treatment with chrysin or naringenin improved bone quality, reduced bone resorption, and bone mineral deposition, although with a lower efficacy compared with alendronate. However, flavonoids exhibited more pronounced antioxidative, anti-inflammatory and phytoestrogenic activities, indicating their great potential in attenuating bone loss and prevention of OP.


Assuntos
Antioxidantes , Flavonoides , Animais , Anti-Inflamatórios/farmacologia , Antioxidantes/farmacologia , Densidade Óssea , Feminino , Flavanonas , Flavonoides/farmacologia , Estresse Oxidativo , Ratos
2.
Microb Cell Fact ; 19(1): 106, 2020 May 19.
Artigo em Inglês | MEDLINE | ID: mdl-32430020

RESUMO

BACKGROUND: We evaluated the functional capacity of plantaricin-producing Lactobacillus plantarum SF9C and S-layer-carrying Lactobacillus brevis SF9B to withstand gastrointestinal transit and to compete among the gut microbiota in vivo. Considering the probiotic potential of Lb. brevis SF9B, this study aims to investigate the antibacterial activity of Lb. plantarum SF9C and their potential for in vivo colonisation in rats, which could be the basis for the investigation of their synergistic functionality. RESULTS: A plantaricin-encoding cluster was identified in Lb. plantarum SF9C, a strain which efficiently inhibited the growth of Listeria monocytogenes ATCC® 19111™ and Staphylococcus aureus 3048. Homology-based three-dimensional (3D) structures of SF9C plantaricins PlnJK and PlnEF were predicted using SWISS-MODEL workspace and the helical wheel representations of the plantaricin peptide helices were generated by HELIQUEST. Contrary to the plantaricin-producing SF9C strain, the S-layer-carrying SF9B strain excluded Escherichia coli 3014 and Salmonella enterica serovar Typhimurium FP1 from the adhesion to Caco-2 cells. Finally, PCR-DGGE analysis of the V2-V3 regions of the 16S rRNA gene confirmed the transit of the two selected lactobacilli through the gastrointestinal tract (GIT). Microbiome profiling via the Illumina MiSeq platform revealed the prevalence of Lactobacillus spp. in the gut microbiota of the Lactobacillus-treated rats, even on the 10th day after the Lactobacillus application, compared to the microbiota of the healthy and AlCl3-exposed rats before Lactobacillus treatment. CONCLUSION: The combined application of Lb. plantarum SF9C and Lb. brevis SF9B was able to influence the intestinal microbiota composition in rats, which was reflected in the increased abundance of Lactobacillus genus, but also in the altered abundances of other bacterial genera, either in the model of healthy or aberrant gut microbiota of rats. The antibacterial activity and capacity to withstand in GIT conditions contributed to the functional aspects of SF9C and SF9B strains that could be incorporated in the probiotic-containing functional foods with a possibility to positively modulate the gut microbiota composition.


Assuntos
Antibiose , Trânsito Gastrointestinal , Lactobacillus plantarum/fisiologia , Levilactobacillus brevis/fisiologia , Probióticos/administração & dosagem , Animais , Bacteriocinas , Células CACO-2 , Microbioma Gastrointestinal , Humanos , Levilactobacillus brevis/genética , Lactobacillus plantarum/genética , Masculino , Glicoproteínas de Membrana/genética , Ratos , Salmonella typhimurium , Staphylococcus aureus
3.
Molecules ; 25(23)2020 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-33261130

RESUMO

Tumor-associated macrophages (TAM) are key regulators of the link between inflammation and cancer, and the interplay between TAM and tumor cells represents a promising target of future therapeutic approaches. We investigated the effect of gallic acid (GA) and caffeic acid (CA) as strong antioxidant and anti-inflammatory agents on tumor growth, angiogenesis, macrophage polarization, and oxidative stress on the angiogenic model caused by the intraperitoneal (ip) inoculation of Ehrlich ascites tumor (EAT) cells (2.5 × 106) in Swiss albino mouse. Treatment with GA or CA at a dose of 40 mg/kg and 80 mg/kg ip was started in exponential tumor growth phase on days 5, 7, 9, and 11. On day 13, the ascites volume and the total number and differential count of the cells present in the peritoneal cavity, the functional activity of macrophages, and the antioxidant and anti-angiogenic parameters were determined. The results show that phenolic acids inhibit the processes of angiogenesis and tumor growth, leading to the increased survival of EAT-bearing mice, through the protection of the tumoricidal efficacy of M1 macrophages and inhibition of proangiogenic factors, particularly VEGF, metalloproteinases -2 and -9, and cyclooxygenase-2 activity.


Assuntos
Produtos Biológicos/farmacologia , Carcinoma de Ehrlich/tratamento farmacológico , Hidroxibenzoatos/farmacologia , Ativação de Macrófagos/efeitos dos fármacos , Neovascularização Patológica/tratamento farmacológico , Estresse Oxidativo/efeitos dos fármacos , Cavidade Peritoneal/irrigação sanguínea , Animais , Abelhas , Carcinoma de Ehrlich/irrigação sanguínea , Carcinoma de Ehrlich/patologia , Masculino , Camundongos
4.
Int J Mol Sci ; 19(9)2018 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-30217029

RESUMO

Nutrition is an important factor that influences bone metabolism, the endocrine and/or paracrine system, and bone-active mineral elements homeostasis. We studied antiosteoporotic effects of grape seed proanthocyanidins extract, icariin or alendronate (ALN) in retinoic acid-induced (13cRA) bone loss in rats. Proanthocyanidins and icariin have beneficial effects on bone health; they have improved the bone weight reduction, the length and the diameter of the bone, calcium, and phosphorus content in bone ash, bone mineral density (BMD), the biochemical markers of bone turnover and uterus atrophy induced by 13cRA. All results suggest that proanthocyanidins and icariin reverse osteoporosis in 13cRA rats by stimulating bone formation or regulating bone resorption by their antioxidative and estrogenic-like activity without toxic side-effects observed in ALN treatment.


Assuntos
Reabsorção Óssea/tratamento farmacológico , Flavonoides/farmacologia , Flavonoides/uso terapêutico , Proantocianidinas/farmacologia , Proantocianidinas/uso terapêutico , Alendronato/farmacologia , Alendronato/uso terapêutico , Animais , Peso Corporal/efeitos dos fármacos , Densidade Óssea/efeitos dos fármacos , Conservadores da Densidade Óssea/farmacologia , Conservadores da Densidade Óssea/uso terapêutico , Remodelação Óssea/efeitos dos fármacos , Feminino , Ratos
5.
Artigo em Inglês | MEDLINE | ID: mdl-27149655

RESUMO

In an effort to improve local bladder cancer control, we investigated the cytotoxic and genotoxic effects of quercetin on human bladder cancer T24 cells. The cytotoxic effect of quercetin against T24 cells was examined by MTT test, clonogenic assay as well as DNA damaging effect by comet assay. In addition, the cytotoxic effect of quercetin on the primary culture of papillary urothelial carcinoma (PUC), histopathological stage T1 of low- or high-grade tumours, was investigated. Our analysis demonstrated a high correlation between reduced number of colony and cell viability and an increase in DNA damage of T24 cells incubated with quercetin at doses of 1 and 50 µM during short term incubation (2 h). At all exposure times (24, 48 and 72 h), the efficacy of quercetin, administered at a 10× higher dose compared to T24 cells, was statistically significant (P < 0.05) for the primary culture of PUC. In conclusion, our study suggests that quercetin could inhibit cell proliferation and colony formation of human bladder cancer cells by inducing DNA damage and that quercetin may be an effective chemopreventive and chemotherapeutic agent for papillary urothelial bladder cancer after transurethral resection.


Assuntos
Antineoplásicos/farmacologia , Quercetina/farmacologia , Neoplasias da Bexiga Urinária/tratamento farmacológico , Carcinoma Papilar/tratamento farmacológico , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Ensaio Cometa , Dano ao DNA , Humanos
6.
Antioxidants (Basel) ; 11(4)2022 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-35453393

RESUMO

Iron, as an essential microelement, is involved in cell proliferation, metabolism, and differentiation. It also modulates the fate and function of macrophages in hematopoiesis and macrophage-mediated inflammatory responses. On the other hand, anesthetics can affect the inflammatory process by modulating the response to stress or the functions of immune cells. The aim of this paper is to understand how excessive iron intake alters physiological, functional characteristics of peripheral tissues and whether different anesthetics can alter cell metabolism regarding oxidative stress (OS) and inflammation through regulation of macrophage polarization. Y59 rats were injected intraperitoneally with iron dextran solution at a dose of 50 mg/kg or were exposed to inhaled anesthetics sevoflurane and isoflurane and their combination for 28 days every other day. The results show that the use of anesthetics reduces the rat's organ weight and increases OS in peripheral tissues, leading to M1 macrophage polarization. Excessive iron intake leads to increased OS, inflammation, and an increased ratio of IL-12/IL-10 cytokines to the M1 macrophage phenotype. Iron, in combination with sevoflurane, has a protective effect in tissues showing the M2 phenotype of macrophages. The combination of iron dextran and isoflurane in rats leads to an increase in the erythropoiesis process made possible through the induction of hypoxia.

7.
Chem Biol Interact ; 256: 111-24, 2016 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-27378625

RESUMO

Macrophage polarization is a process when macrophage expresses different functional programs in response to microenvironmental signals and two extreme forms exist; M1 and M2 macrophages. M1 macrophages are highly microbicidal and anticancer with enhanced ability to kill and phagocytose pathogens, upregulate pro-inflammatory cytokines and reactive molecular species, and present antigens; M2 macrophages and the related tumour associated macrophages (TAMs) regulate tissue remodelling and promote tissue repair and angiogenesis and can amplification of metabolic pathways that can suppress adaptive immune responses. It is demonstrated that ROS production, critical for the activation and functions of M1 macrophages, is necessary for the differentiation of M2 macrophages and TAMs, and that antioxidant therapy blocks TAMs differentiation and tumorigenesis in mouse models of cancer. In order to study how caffeic acid (CA), a natural antioxidant, affects macrophage function, polarization, angiogenesis and tumour growth we injected mice with Ehrlich ascites tumour (EAT) cells and treated them for 10 days with CA in a dose of 40 and/or 80 mg kg(-1.) Macrophage polarization was further characterized by quantifying secreted pro- and anti-inflammatory cytokines, nitric oxide and arginase 1 activity. CA may increase the cytotoxic actions of M1 macrophages and inhibit tumour growth; inhibitory activity on TAMs may be mediated through its antioxidative activity. Taken together, we conclude that the antitumour activity of CA was the result of the synergistic activities of different mechanisms by which CA acts on proliferation, angiogenesis, immunomodulation and survival. The continuous administration of CA efficiently blocked the occurrence of TAMs and markedly suppressed tumorigenesis in mouse cancer models. Targeting TAMs by antioxidants can be a potentially effective method for cancer treatment.


Assuntos
Antioxidantes/uso terapêutico , Ácidos Cafeicos/uso terapêutico , Carcinoma de Ehrlich/irrigação sanguínea , Carcinoma de Ehrlich/tratamento farmacológico , Macrófagos/efeitos dos fármacos , Neovascularização Patológica/tratamento farmacológico , Estresse Oxidativo/efeitos dos fármacos , Animais , Antioxidantes/farmacologia , Ácidos Cafeicos/farmacologia , Carcinoma de Ehrlich/patologia , Proliferação de Células/efeitos dos fármacos , Citocinas/análise , Macrófagos/patologia , Masculino , Camundongos , Neovascularização Patológica/patologia , Óxido Nítrico/análise , Fator A de Crescimento do Endotélio Vascular/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA