Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
Nutr Neurosci ; : 1-10, 2023 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-37776526

RESUMO

Trehalose is a naturally occurring sugar found in various food and pharmaceutical preparations with the ability to enhance cellular proteostasis and reduce the formation of toxic intracellular protein aggregates, making it a promising therapeutic candidate for various neurodegenerative disorders. OBJECTIVES: Here, we explored the effectiveness of nutritional trehalose supplementation in ameliorating symptoms in a mouse model of Fragile X-associated tremor/ataxia syndrome (FXTAS), an incurable late onset manifestation of moderately expanded trinucleotide CGG repeat expansion mutations in the 5' untranslated region of the fragile X messenger ribonucleoprotein 1 gene (FMR1). METHODS: An inducible mouse model of FXTAS expressing 90 CGG repeats in the brain had been previously developed, which faithfully captures hallmarks of the disorder, the formation of intracellular inclusions, and the disturbance of motor function. Taking advantage of the inducible nature of the model, we investigated the therapeutic potential of orally administered trehalose under two regimens, modelling disease prevention and disease treatment. RESULTS AND DISCUSSION: Trehalose's effectiveness in combating protein aggregation is frequently attributed to its ability to induce autophagy. Accordingly, trehalose supplementation under the prevention regimen ameliorated the formation of intranuclear inclusions and improved the motor deficiencies resulting from the induced expression of 90 CGG repeats, but it failed to reverse the existing nuclear pathology as a treatment strategy. Given the favorable safety profile of trehalose, it is promising to further explore the potential of this agent for early stage FXTAS.

2.
Nutr Neurosci ; 24(12): 951-962, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31814540

RESUMO

Introduction: Phytoestrogens are non-steroidal estrogen analogues and are found primarily in soy products. They have received increasing attention as dietary supplements for estrogen deficiency and as modulators of endogenous estrogen functions, including cognition and emotion. In addition to modifying the levels of circulating sex hormones, phytoestrogens also exert direct effects on estrogen and androgen receptors in the brain and thus effectively modulate the neural circuit functions.Objective: The aim of this study was to investigate the long-term effects of low phytoestrogen intake (∼6 weeks) on the hippocampal plasticity and hippocampus-dependent memory formation in the adult C57BL/6 male mice.Methods and Results: In comparison to mice on a diet with normal phytoestrogen content, mice on low phytoestrogen diet showed a significant reduction in the phosphorylation of NR2B subunit, a molecular correlate of plasticity in the Schaffer collateral-CA1 synapse. We observed a profound decrease in long-term potentiation (LTP) in the ventral hippocampus, whereas no effect on plasticity was evident in its dorsal portion. Furthermore, we demonstrated that acute perfusion of slices with an estrogen analogue equol, an isoflovane metabolized from daidzein produced by the bacterial flora in the gut, was able to rescue the observed LTP deficit. Examining potential behavioral correlates of the plasticity attenuation, we found that mice on phytoestrogen-free diet display decreased contextual fear memory at remote but not at recent time points after training.Conclusions: Our data suggests that nutritional phytoestrogens have profound effects on the plasticity in the ventral hippocampus and ventral hippocampus-dependent memory.


Assuntos
Dieta , Hipocampo/fisiologia , Memória/fisiologia , Plasticidade Neuronal/fisiologia , Fitoestrógenos/administração & dosagem , Animais , Comportamento Animal , Equol/farmacologia , Medo/fisiologia , Hipocampo/efeitos dos fármacos , Potenciação de Longa Duração/efeitos dos fármacos , Potenciação de Longa Duração/fisiologia , Masculino , Memória/efeitos dos fármacos , Camundongos , Camundongos Endogâmicos C57BL , Plasticidade Neuronal/efeitos dos fármacos , Fosforilação/fisiologia , Receptores de N-Metil-D-Aspartato/fisiologia , Sinapses/fisiologia
3.
Hum Mol Genet ; 26(11): 2133-2145, 2017 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-28369393

RESUMO

A CGG-repeat expansion in the premutation range in the Fragile X mental retardation 1 gene (FMR1) has been identified as the genetic cause of Fragile X-associated tremor/ataxia syndrome (FXTAS), a late-onset neurodegenerative disorder that manifests with action tremor, gait ataxia and cognitive impairments. In this study, we used a bigenic mouse model, in which expression of a 90CGG premutation tract is activated in neural cells upon doxycycline administration-P90CGG mouse model. We, here, demonstrate the behavioural manifestation of clinically relevant features of FXTAS patients and premutation carrier individuals in this inducible mouse model. P90CGG mice display heightened anxiety, deficits in motor coordination and impaired gait and represent the first FXTAS model that exhibits an ataxia phenotype as observed in patients. The behavioural phenotype is accompanied by the formation of ubiquitin/FMRpolyglycine-positive intranuclear inclusions, as another hallmark of FXTAS, in the cerebellum, hippocampus and amygdala. Strikingly, upon cessation of transgene induction the anxiety phenotype of mice recovers along with a reduction of intranuclear inclusions in dentate gyrus and amygdala. In contrast, motor function deteriorates further and no reduction in intranuclear inclusions can be observed in the cerebellum. Our data thus demonstrate that expression of a 90CGG premutation expansion outside of the FMR1 context is sufficient to evoke an FXTAS-like behavioural phenotype. Brain region-specific neuropathology and (partial) behavioural reversibility make the inducible P90CGG a valuable mouse model for testing pathogenic mechanisms and therapeutic intervention methods.


Assuntos
Ataxia/genética , Proteína do X Frágil da Deficiência Intelectual/genética , Síndrome do Cromossomo X Frágil/genética , Tremor/genética , Animais , Ansiedade/genética , Ansiedade/metabolismo , Ataxia/metabolismo , Encéfalo/patologia , Ataxia Cerebelar/genética , Transtornos Cognitivos/genética , Modelos Animais de Doenças , Proteína do X Frágil da Deficiência Intelectual/metabolismo , Síndrome do Cromossomo X Frágil/metabolismo , Marcha , Marcha Atáxica/genética , Marcha Atáxica/metabolismo , Corpos de Inclusão Intranuclear/genética , Camundongos , Transtornos dos Movimentos/genética , Neurônios/patologia , Tremor/metabolismo , Expansão das Repetições de Trinucleotídeos/genética
4.
Mol Ther Methods Clin Dev ; 32(2): 101243, 2024 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-38605812

RESUMO

Viral vector gene therapy has immense promise for treating central nervous system (CNS) disorders. Although adeno-associated virus vectors (AAVs) have had success, their small packaging capacity limits their utility to treat the root cause of many CNS disorders. Adenoviral vectors (Ad) have tremendous potential for CNS gene therapy approaches. Currently, the most common vectors utilize the Group C Ad5 serotype capsid proteins, which rely on the Coxsackievirus-Adenovirus receptor (CAR) to infect cells. However, these Ad5 vectors are unable to transduce many neuronal cell types that are dysfunctional in many CNS disorders. The human CD46 (hCD46) receptor is widely expressed throughout the human CNS and is the primary attachment receptor for many Ad serotypes. Therefore, to overcome the current limitations of Ad vectors to treat CNS disorders, we created chimeric first generation Ad vectors that utilize the hCD46 receptor. Using a "humanized" hCD46 mouse model, we demonstrate these Ad vectors transduce cerebellar cell types, including Purkinje cells, that are refractory to Ad5 transduction. Since Ad vector transduction properties are dependent on their capsid proteins, these chimeric first generation Ad vectors open new avenues for high-capacity helper-dependent adenovirus (HdAd) gene therapy approaches for cerebellar disorders and multiple neurological disorders.

5.
Hear Res ; 435: 108819, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37276687

RESUMO

Viral vector gene therapy is an attractive strategy to treat hearing loss. Since hearing loss is due to a variety of pathogenic signaling cascades in distinct cells, viral vectors that can express large or multiple genes in a cell-type specific manner are needed. Helper-dependent adenoviral vectors (HdAd) are safe viral vectors with a large packaging capacity (-36 kb). Despite the potential of HdAd, its use in the inner ear is largely unexplored. Therefore, to evaluate the utility of HdAd for inner ear gene therapy, we created two HdAd vectors that use distinct cellular receptors for transduction: HdAd Serotype Type 5 (HdAd5), the Coxsackie-Adenovirus Receptor (CAR) and a chimeric HdAd 5/35, the human CD46+ receptor (hCD46). We delivered these vectors through the round window (RW) or scala media in CBA/J, C57Bl6/J and hCD46 transgenic mice. Immunostaining in conjunction with confocal microscopy of cochlear sections revealed that multiple cell types were transduced using HdAd5 and HdAd 5/35 in all mouse models. Delivery of HdAd5 via RW in the C57Bl/6 J or CBA/J cochlea resulted in transduced mesenchymal cells of the peri­lymphatic lining and modiolar region while scala media delivery resulted in transduction of supporting cells and inner hair cells. Hd5/35 transduction was CD46 dependent and RW delivery of HdAd5/35 in the hCD46 mouse model resulted in a similar transduction pattern as HdAd5 in the peri­lymphatic lining and modiolar region in the cochlea. Our data indicate that HdAd vectors are promising vectors for use in inner ear gene therapy to treat some causes of hearing loss.


Assuntos
Surdez , Células Ciliadas Vestibulares , Perda Auditiva , Camundongos , Animais , Humanos , Adenoviridae/genética , Camundongos Endogâmicos CBA , Terapia Genética , Camundongos Transgênicos , Perda Auditiva/genética , Vetores Genéticos , Surdez/terapia
6.
Nat Commun ; 12(1): 1265, 2021 02 24.
Artigo em Inglês | MEDLINE | ID: mdl-33627639

RESUMO

Fragile X-associated tremor/ataxia syndrome (FXTAS) is an incurable neurodegenerative disorder caused by expansion of CGG repeats in the FMR1 5'UTR. The RNA containing expanded CGG repeats (rCGGexp) causes cell damage by interaction with complementary DNA, forming R-loop structures, sequestration of nuclear proteins involved in RNA metabolism and initiation of translation of polyglycine-containing protein (FMRpolyG), which forms nuclear insoluble inclusions. Here we show the therapeutic potential of short antisense oligonucleotide steric blockers (ASOs) targeting directly the rCGGexp. In nuclei of FXTAS cells ASOs affect R-loop formation and correct miRNA biogenesis and alternative splicing, indicating that nuclear proteins are released from toxic sequestration. In cytoplasm, ASOs significantly decrease the biosynthesis and accumulation of FMRpolyG. Delivery of ASO into a brain of FXTAS mouse model reduces formation of inclusions, improves motor behavior and corrects gene expression profile with marginal signs of toxicity after a few weeks from a treatment.


Assuntos
Ataxia/metabolismo , Proteína do X Frágil da Deficiência Intelectual/metabolismo , Síndrome do Cromossomo X Frágil/metabolismo , Oligonucleotídeos Antissenso/metabolismo , Tremor/metabolismo , Expansão das Repetições de Trinucleotídeos/genética , Expansão das Repetições de Trinucleotídeos/fisiologia , Processamento Alternativo/genética , Processamento Alternativo/fisiologia , Animais , Ataxia/genética , Éxons/genética , Feminino , Proteína do X Frágil da Deficiência Intelectual/genética , Síndrome do Cromossomo X Frágil/genética , Masculino , Camundongos , Camundongos Transgênicos , MicroRNAs/genética , MicroRNAs/metabolismo , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Oligonucleotídeos Antissenso/genética , Tremor/genética
7.
iScience ; 24(8): 102868, 2021 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-34381982

RESUMO

Duplications and deletions of short chromosomal fragments are increasingly recognized as the cause for rare neurodevelopmental conditions and disorders. The NDR2 gene encodes a protein kinase important for neuronal development and is part of a microduplication region on chromosome 12 that is associated with intellectual disabilities, autism, and epilepsy. We developed a conditional transgenic mouse with increased Ndr2 expression in postmigratory forebrain neurons to study the consequences of an increased gene dosage of this Hippo pathway kinase on brain circuitry and cognitive functions. Our analysis reveals reduced terminal fields and synaptic transmission of hippocampal mossy fibers, altered hippocampal network activity, and deficits in mossy fiber-dependent behaviors. Reduced doublecortin expression and protein interactome analysis indicate that transgenic Ndr2 disturbs the maturation of granule cells in the dentate gyrus. Together, our data suggest that increased expression of Ndr2 may critically contribute to the development of intellectual disabilities upon gene amplification.

8.
Brain Struct Funct ; 225(7): 2219-2238, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32749543

RESUMO

Deficits in arginine vasopressin (AVP) and oxytocin (OT), two neuropeptides closely implicated in the modulation of social behaviours, have been reported in some early developmental disorders and autism spectrum disorders. Mutations in the X-linked methyl-CpG-binding protein 2 (MECP2) gene are associated to Rett syndrome and other neuropsychiatric conditions. Thus, we first analysed AVP and OT expression in the brain of Mecp2-mutant mice by immunohistochemistry. Our results revealed no significant differences in these systems in young adult Mecp2-heterozygous females, as compared to WT littermates. By contrast, we found a significant reduction in the sexually dimorphic, testosterone-dependent, vasopressinergic innervation in several nuclei of the social brain network and oxytocinergic innervation in the lateral habenula of Mecp2-null males, as compared to WT littermates. Analysis of urinary production of pheromones shows that Mecp2-null males lack the testosterone-dependent pheromone darcin, strongly suggesting low levels of androgens in these males. In addition, resident-intruder tests revealed lack of aggressive behaviour in Mecp2-null males and decreased chemoinvestigation of the intruder. By contrast, Mecp2-null males exhibited enhanced social approach, as compared to WT animals, in a 3-chamber social interaction test. In summary, Mecp2-null males, which display internal testicles, display a significant reduction of some male-specific features, such as vasopressinergic innervation within the social brain network, male pheromone production and aggressive behaviour. Thus, atypical social behaviours in Mecp2-null males may be caused, at least in part, by the effect of lack of MeCP2 over sexual differentiation.


Assuntos
Arginina Vasopressina/metabolismo , Comportamento Animal/fisiologia , Encéfalo/metabolismo , Proteína 2 de Ligação a Metil-CpG/genética , Ocitocina/metabolismo , Feromônios/urina , Diferenciação Sexual/fisiologia , Agressão/fisiologia , Animais , Modelos Animais de Doenças , Feminino , Peptídeos e Proteínas de Sinalização Intercelular/genética , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Masculino , Camundongos , Camundongos Knockout , Caracteres Sexuais , Comportamento Social
9.
Brain Struct Funct ; 224(4): 1647-1658, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-30923887

RESUMO

The protein doublecortin is mainly expressed in migrating neuroblasts and immature neurons. The X-linked gene MECP2, associated to several neurodevelopmental disorders such as Rett syndrome, encodes the protein methyl-CpG-binding protein 2 (MeCP2), a regulatory protein that has been implicated in neuronal maturation and refinement of olfactory circuits. Here, we explored doublecortin immunoreactivity in the brain of young adult female Mecp2-heterozygous and male Mecp2-null mice and their wild-type littermates. The distribution of doublecortin-immunoreactive somata in neurogenic brain regions was consistent with previous reports in rodents, and no qualitative differences were found between genotypes or sexes. Quantitatively, we found a significant increase in doublecortin cell density in the piriform cortex of Mecp2-null males as compared to WT littermates. A similar increase was seen in a newly identified population of doublecortin cells in the olfactory tubercle. In these olfactory structures, however, the percentage of doublecortin immature neurons that also expressed NeuN was not different between genotypes. By contrast, we found no significant differences between genotypes in doublecortin immunoreactivity in the olfactory bulbs. Nonetheless, in the periglomerular layer of Mecp2-null males, we observed a specific decrease of immature neurons co-expressing doublecortin and NeuN. Overall, no differences were evident between Mecp2-heterozygous and WT females. In addition, no differences could be detected between genotypes in the density of doublecortin-immunoreactive cells in the hippocampus or striatum of either males or females. Our results suggest that MeCP2 is involved in neuronal maturation in a region-dependent manner.


Assuntos
Proteína 2 de Ligação a Metil-CpG/fisiologia , Proteínas Associadas aos Microtúbulos/fisiologia , Neurônios/fisiologia , Neuropeptídeos/fisiologia , Tubérculo Olfatório/crescimento & desenvolvimento , Tubérculo Olfatório/metabolismo , Córtex Piriforme/crescimento & desenvolvimento , Córtex Piriforme/metabolismo , Animais , Contagem de Células , Proteínas do Domínio Duplacortina , Feminino , Masculino , Proteína 2 de Ligação a Metil-CpG/genética , Camundongos Knockout , Proteínas Associadas aos Microtúbulos/metabolismo , Neurônios/citologia , Neurônios/metabolismo , Neuropeptídeos/metabolismo , Condutos Olfatórios/citologia , Condutos Olfatórios/crescimento & desenvolvimento , Condutos Olfatórios/metabolismo , Tubérculo Olfatório/citologia , Córtex Piriforme/citologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA