Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 39
Filtrar
1.
Inflammopharmacology ; 32(2): 1203-1223, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38451395

RESUMO

For treating chronic diseases like rheumatoid arthritis, herbal medicines are preferred due to their evident therapeutic effects and lesser side effects as compared to the long-term used conventional drugs. In this study, the anti-rheumatoid arthritis effect of an unexplored marine grass Halodule pinifolia (HP), and a combination of it with Glycyrrhiza glabra (liquorice; LQ), prepared as a conventional suspension (C1) and a lipid nano-emulsion (C1-N) was evaluated in Freund's complete adjuvant (FCA)- and collagen-induced arthritis (CIA) models. Formulations C1 and C1-N contained standardized extract HP (100 mg/kg) as major active ingredient and liquorice LQ (50 mg/kg) as both active ingredient (anti-inflammatory and anti-ulcer) and sweetening agent. Oral administration of HP and C1 to FCA-induced Sprague-Dawley rats significantly reduced the paw oedema, spleen index, controlled the haematological parameters, cytokine levels (IL-1ß, IL-6, TNF-α estimated by ELISA), mRNA expression of cytokines and osteoclast markers (RANK, TRAP and cathepsin K measured by RTPCR). Histopathology and radiological scanning demonstrated lesser joint deterioration in sample-treated rats, as evident phenotypically. The downregulation of CD51 and MMP-3 (western blot) corroborated the anti-arthritic effect of HP and C1. HP showed better results among all. Further, under the CIA model, both C1 and C1-N were found to be potentially active as evidenced by their effect on rat paw oedema, spleen index, haematological parameters, rheumatoid factor, cytokines, osteoclast markers, histology and X-rays. The results proved the anti-arthritic effect of HP and the formulations, particularly the lipid nano-emulsion that showed improved stability as well as activity.


Assuntos
Artrite Experimental , Artrite Reumatoide , Ratos , Animais , Ratos Sprague-Dawley , Artrite Reumatoide/tratamento farmacológico , Artrite Reumatoide/metabolismo , Artrite Experimental/metabolismo , Citocinas/metabolismo , Edema/tratamento farmacológico , Lipídeos
2.
Bioorg Med Chem Lett ; 96: 129494, 2023 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-37797804

RESUMO

A new class of benzimidazole derivatives as tubulin polymerization inhibitors has been designed and synthesized in this study. The in vitro anticancer profile of the developed molecules was reconnoitred on selected human cancer cells. The highest cytotoxicity was illustrated by compounds 7n and 7u with IC50 values ranging from 2.55 to 17.89 µM with specificity toward SK-Mel-28 cells. They displayed 5-fold less cytotoxicity towards normal rat kidney epithelial NRK52E cells, which implies that they are not harmful to normal, healthy cells. The cellular staining procedures like AO/EB, DCFDA, and DAPI were applied to comprehend the inherent mechanism of apoptosis which displayed nuclear and morphological alterations. The Annexin V binding and JC-1 studies were executed to evaluate the extent of apoptosis and the decline in mitochondrial transmembrane potential in SK-Mel-28 cell lines. Compound 7n dose-dependently arrested the G2/M phase of the cell cycle and the target-based outcomes proposed tubulin polymerization inhibition by 7n (IC50 of 5.05±0.13 µM). Computational studies were also conducted on the tubulin protein (PDB ID: 3E22) to investigate the stabilized binding interactions of compounds 7n and 7u with tubulin, respectively.


Assuntos
Antineoplásicos , Moduladores de Tubulina , Ratos , Humanos , Animais , Relação Estrutura-Atividade , Moduladores de Tubulina/química , Proliferação de Células , Ensaios de Seleção de Medicamentos Antitumorais , Antineoplásicos/farmacologia , Antineoplásicos/química , Tubulina (Proteína)/metabolismo , Linhagem Celular Tumoral , Apoptose , Benzimidazóis/farmacologia , Polimerização
3.
Arch Pharm (Weinheim) ; 356(5): e2200449, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36807372

RESUMO

A simple "click" protocol was employed in the quest of synthesizing 1,2,3-triazole-linked benzimidazoles as promising anticancer agents on various human cancer cell lines such as A549, HCT116, SK-Mel-28, HT-29, and MCF-7. Compound 12j demonstrated significant cytotoxic potential towards SK-Mel-28 cancer cells (IC50 : 4.17 ± 0.09 µM) and displayed no cytotoxicity (IC50 : > 100 µM) against normal human BEAS-2B cells inferring its safety towards normal healthy cells. Further to comprehend the underlying apoptosis mechanisms, AO/EB, dichlorodihydrofluorescein diacetate (DCFDA), and 4',6-diamidino-2-phenylindole (DAPI) staining were performed, which revealed the nuclear and morphological alterations. Compound 12j displayed impairment in cellular migration and inhibited colony formation. The annexin V binding assay and JC-1 were implemented to evaluate the scope of apoptosis and the loss of the mitochondrial transmembrane potential in SK-Mel-28 cells. Cell-cycle analysis revealed that compound 12j arrested the cells at the G2/M phase in a dose-dependent manner. Target-based assays established the inhibition of tubulin polymerization by 12j at an IC50 value of 5.65 ± 0.05 µM and its effective binding with circulating tumor DNA as a DNA intercalator. The detailed binding interactions of 12j with tubulin and DNA were examined by docking studies on PDB ID: 3E22 and DNA hexamer (PDB ID: 1NAB), respectively.


Assuntos
Antineoplásicos , Moduladores de Tubulina , Humanos , Relação Estrutura-Atividade , Moduladores de Tubulina/farmacologia , Moduladores de Tubulina/química , Substâncias Intercalantes/farmacologia , Ensaios de Seleção de Medicamentos Antitumorais , Proliferação de Células , Tubulina (Proteína)/metabolismo , Antineoplásicos/química , Apoptose , DNA , Simulação de Acoplamento Molecular , Polimerização
4.
Inflammopharmacology ; 29(1): 253-267, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-32918703

RESUMO

OBJECTIVES: The study aimed to explore the anti-inflammatory effect, underlying mechanism, and chemistry of Halodule pinifolia extract. METHODS: The ethyl acetate (EHP) and methanol (MHP) extracts of Halodule pinifolia were screened for pro-inflammatory cytokine inhibition effect under various in vitro (LPSand crystal-induced inflammation) and in vivo models (LPS-induced endotoxaemia model, carrageenan-induced paw oedema model, and oxalate-induced renal nephropathy model of inflammation). The effect of EHP on the expression of inflammatory markers using western blot analysis (in vitro) was investigated. Chemical constituents of bioactive EHP were isolated through chromatography and characterised using NMR spectroscopy. Furthermore, EHP was standardised for rosmarinic acid, vanillic acid, and ethyl protocatechuate using HPLC. Also, total phytosterols, phenolic, and flavonoid content of EHP were determined by UV spectroscopy. KEY FINDINGS: EHP was comparatively more effective than MHP in inhibiting cytokines secretions under LPS-induced in vitro models. Furthermore, EHP was screened under endotoxaemia in vivo model, EHP (250 mg/kg) reduced plasma IL-6, TNF-α, and IL-1ß levels by 88.3%, 78.2%, and 74.5%, respectively. In the carrageenan-induced oedema model, EHP (200 mg/kg) reduced paw volume and release of TNF-α (69.3%) and IL-1ß (43.1%). EHP (200 mg/kg) further controlled renal nephropathy by inhibiting plasma IL-1ß and BUN levels. Also, a significant reduction of mRNA expressions of TNF-α and IL-1ß and KIM-1 in renal tissues was observed. Through western blot, EHP was identified to regulate the expression of pro-form as well as mature-form of IL-1ß and caspase-1. EHP constituted rosmarinic acid (RA), vanillic acid (VA), ethyl protocatechuate (EP), sitosterol, stigmasterol, campesterol, and dihydrobrassicasterol. It was determined that 4.6 mg/g of RA, 2.92 mg/g of VA, 0.76 mg/g of EP, 21.7 mg/g of total phenolics, 29.8 mg/g of total flavonoids, and 48.2 mg/g of total phytosterols were present in dry EHP. The presence of anti-inflammatory constituents such as RA, VA, and PE in EHP corroborated the in vitro and in vivo anti-inflammatory activity of EHP. CONCLUSION: The anti-inflammatory property of EHP and its action through attenuation of pan-cytokines suggest that it can be developed into an oral pharmaceutical drug.


Assuntos
Alismatales/química , Anti-Inflamatórios/farmacologia , Inflamação/tratamento farmacológico , Extratos Vegetais/farmacologia , Acetatos/química , Animais , Anti-Inflamatórios/administração & dosagem , Anti-Inflamatórios/isolamento & purificação , Carragenina , Citocinas/metabolismo , Modelos Animais de Doenças , Edema/tratamento farmacológico , Inflamação/patologia , Lipopolissacarídeos , Masculino , Metanol/química , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Extratos Vegetais/administração & dosagem
5.
Inflammopharmacology ; 28(5): 1365-1373, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32356087

RESUMO

OBJECTIVES: The aim of the study was to explore the inhibition efficacy of new synthetic coumarinolignans (SCLs) against the secretion of pro-inflammatory cytokines in two in vivo models of inflammation. METHODS: Four SCLs 1-4 were screened for their pro-inflammatory cytokine inhibitory potential through oral administration at a dose of 50 mg/kg body weight in lipopolysaccharide-induced mouse endotoxaemia and carrageenan-induced mouse paw oedema models. Levels of pro-inflammatory cytokines (IL-1ß, TNFα and IL-6) in blood and paw tissue samples were estimated using ELISA. Paw oedema was measured using a plethysmometer. Results were compared with a natural coumarinolignan, cleomiscosin A (5), and the structure-activity relationship (SAR) was interpreted. RESULTS AND DISCUSSION: Compound 2 had the greatest potential in the endotoxaemia model, exhibiting 66.41%, 62.56% and 43.15% inhibition of plasma IL-1ß, TNFα and IL-6 secretions, respectively. Further dose-dependent study revealed its anti-inflammatory potential even at dose of 10 mg/kg body weight with 24.42% decline in the level of IL-1ß. Nevertheless, SCLs 1, 3 and 4 showed marked inhibitory activity with 57.54%, 51.48% and 62.46% reduction in the levels of IL-1ß, respectively. Moreover, compound 2 decreased the plasma TNFα and IL-1ß levels to 50.03% and 36.58% along with the reduction of paw oedema volume in the local inflammation induced by carrageenan. All compounds including cleomiscosin A (5) were more effective against IL-1ß. By studying SAR, the presence of dihydroxyl groups in the phenyl ring of lignans was identified to be essential for the activity. Also, esterification of lignans and presence of a 4-methyl substituent in the coumarin nucleus were found to play some role in enhancing the activity. CONCLUSION: All four SCLs, especially compound 2, have shown vast potential to emerge out as promising anti-inflammatory drugs.


Assuntos
Anti-Inflamatórios/farmacologia , Cumarínicos/farmacologia , Citocinas/metabolismo , Edema/tratamento farmacológico , Inflamação/tratamento farmacológico , Sepse/tratamento farmacológico , Animais , Carragenina/farmacologia , Modelos Animais de Doenças , Edema/induzido quimicamente , Edema/metabolismo , Inflamação/metabolismo , Interleucina-1beta/metabolismo , Interleucina-6/metabolismo , Lipopolissacarídeos/farmacologia , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos BALB C , NF-kappa B/metabolismo , Extratos Vegetais/farmacologia , Sepse/metabolismo , Fator de Necrose Tumoral alfa/metabolismo
6.
J Am Soc Nephrol ; 28(1): 76-83, 2017 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-27151924

RESUMO

CKD associates with systemic inflammation, but the underlying cause is unknown. Here, we investigated the involvement of intestinal microbiota. We report that collagen type 4 α3-deficient mice with Alport syndrome-related progressive CKD displayed systemic inflammation, including increased plasma levels of pentraxin-2 and activated antigen-presenting cells, CD4 and CD8 T cells, and Th17- or IFNγ-producing T cells in the spleen as well as regulatory T cell suppression. CKD-related systemic inflammation in these mice associated with intestinal dysbiosis of proteobacterial blooms, translocation of living bacteria across the intestinal barrier into the liver, and increased serum levels of bacterial endotoxin. Uremia did not affect secretory IgA release into the ileum lumen or mucosal leukocyte subsets. To test for causation between dysbiosis and systemic inflammation in CKD, we eradicated facultative anaerobic microbiota with antibiotics. This eradication prevented bacterial translocation, significantly reduced serum endotoxin levels, and fully reversed all markers of systemic inflammation to the level of nonuremic controls. Therefore, we conclude that uremia associates with intestinal dysbiosis, intestinal barrier dysfunction, and bacterial translocation, which trigger the state of persistent systemic inflammation in CKD. Uremic dysbiosis and intestinal barrier dysfunction may be novel therapeutic targets for intervention to suppress CKD-related systemic inflammation and its consequences.


Assuntos
Translocação Bacteriana , Disbiose , Inflamação/etiologia , Inflamação/microbiologia , Intestinos/microbiologia , Insuficiência Renal Crônica/complicações , Animais , Camundongos
7.
Clin Immunol ; 185: 119-127, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-29111236

RESUMO

Induction therapy of proliferative lupus nephritis still requires the use of unselective immunosuppressive drugs with significant toxicities. In search of more specific drugs with equal efficacy but fewer side effects we considered blocking pro-inflammatory chemokine monocyte chemoattractant protein-1 (MCP-1/CCL2) and homeostatic chemokine stromal cell-derived factor-1 (SDF-1/CXCL12), which both contribute to the onset and progression of proliferative lupus nephritis yet through different mechanisms. We hypothesized that dual antagonism could be as potent on lupus nephritis as the unselective immunosuppressant cyclophosphamide (CYC). We estimated serum levels of CCL2 and CXCL12 in patients with SLE (n=99) and compared the results with healthy individuals (n=21). In order to prove our hypothesis we used l-enantiomeric RNA Spiegelmer® chemokine antagonists, i.e. the CCL2-specific mNOX-E36 and the CXCL12-specific NOX-A12 to treat female MRL/lpr mice from week 12 to 20 of age with either anti-CXCL12 or anti-CCL2 alone or both. SLE patients showed elevated serum levels of CCL2 but not of CXCL12. Female MRL/lpr mice treated with dual blockade showed significantly more effective than either monotherapy in preventing proteinuria, immune complex glomerulonephritis, and renal excretory failure and the results are at par with CYC treatment. Dual blockade reduced leukocyte counts and renal IL-6, IL-12p40, CCL-5, CCL-2 and CCR-2 mRNA expression. Dual blockade of CCL2 and CXCL12 can be as potent as CYC to suppress the progression of proliferative lupus nephritis probably because the respective chemokine targets mediate different disease pathomechanisms, i.e. systemic autoimmunity and peripheral tissue inflammation.

8.
Clin Sci (Lond) ; 131(8): 625-634, 2017 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-28351959

RESUMO

Although the role of adaptive immune mechanisms, e.g. autoantibody formation and abnormal T-cell activation, has been long noted in the pathogenesis of human systemic lupus erythematosus (SLE), the role of innate immunity has been less well characterized. An intricate interplay between both innate and adaptive immune elements exists in protective anti-infective immunity as well as in detrimental autoimmunity. More recently, it has become clear that the innate immune system in this regard not only starts inflammation cascades in SLE leading to disease flares, but also continues to fuel adaptive immune responses throughout the course of the disease. This is why targeting the innate immune system offers an additional means of treating SLE. First trials assessing the efficacy of anti-type I interferon (IFN) therapy or modulators of pattern recognition receptor (PRR) signalling have been attempted. In this review, we summarize the available evidence on the role of several distinct innate immune elements, especially neutrophils and dendritic cells as well as the IFN system, as well as specific innate PRRs along with their signalling pathways. Finally, we highlight recent clinical trials in SLE addressing one or more of the aforementioned components of the innate immune system.


Assuntos
Imunidade Inata , Lúpus Eritematoso Sistêmico/imunologia , Ensaios Clínicos como Assunto , Humanos , Imunidade Celular , Fatores Imunológicos/uso terapêutico , Interferon Tipo I/antagonistas & inibidores , Interferon Tipo I/imunologia , Lúpus Eritematoso Sistêmico/tratamento farmacológico , Terapia de Alvo Molecular/métodos , Receptores de Reconhecimento de Padrão/imunologia , Transdução de Sinais/imunologia
9.
Clin Immunol ; 169: 139-147, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-27392463

RESUMO

Induction therapy of proliferative lupus nephritis still requires the use of unselective immunosuppressive drugs with significant toxicities. In search of more specific drugs with equal efficacy but fewer side effects we considered blocking pro-inflammatory chemokine monocyte chemoattractant protein-1 (MCP-1/CCL2) and homeostatic chemokine stromal cell-derived factor-1 (SDF-1/CXCL12), which both contribute to the onset and progression of proliferative lupus nephritis yet through different mechanisms. We hypothesized that dual antagonism could be as potent on lupus nephritis as the unselective immunosuppressant cyclophosphamide (CYC). We estimated serum levels of CCL2 and CXCL12 in patients with SLE (n=99) and compared the results with healthy individuals (n=21). In order to prove our hypothesis we used l-enantiomeric RNA Spiegelmer® chemokine antagonists, i.e. the CCL2-specific mNOX-E36 and the CXCL12-specific NOX-A12 to treat female MRL/lpr mice from week 12 to 20 of age with either anti-CXCL12 or anti-CCL2 alone or both. SLE patients showed elevated serum levels of CCL2 but not of CXCL12. Female MRL/lpr mice treated with dual blockade showed significantly more effective than either monotherapy in preventing proteinuria, immune complex glomerulonephritis, and renal excretory failure and the results are at par with CYC treatment. Dual blockade reduced leukocyte counts and renal IL-6, IL-12p40, CCL-5, CCL-2 and CCR-2 mRNA expression. Dual blockade of CCL2 and CXCL12 can be as potent as CYC to suppress the progression of proliferative lupus nephritis probably because the respective chemokine targets mediate different disease pathomechanisms, i.e. systemic autoimmunity and peripheral tissue inflammation.


Assuntos
Quimiocina CCL2/antagonistas & inibidores , Quimiocina CXCL12/antagonistas & inibidores , Ciclofosfamida/farmacologia , Nefrite Lúpica/tratamento farmacológico , Oligorribonucleotídeos/farmacologia , Adulto , Animais , Quimiocina CCL2/genética , Quimiocina CCL2/metabolismo , Quimiocina CXCL12/genética , Quimiocina CXCL12/metabolismo , Ensaio de Imunoadsorção Enzimática , Feminino , Expressão Gênica/genética , Glomerulonefrite/prevenção & controle , Homeostase/genética , Humanos , Imunossupressores/farmacologia , Rim/efeitos dos fármacos , Rim/metabolismo , Rim/patologia , Lúpus Eritematoso Sistêmico/sangue , Nefrite Lúpica/genética , Nefrite Lúpica/metabolismo , Masculino , Camundongos Endogâmicos MRL lpr , Pessoa de Meia-Idade , Oligorribonucleotídeos/genética , Oligorribonucleotídeos/metabolismo , Proteinúria/prevenção & controle , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Resultado do Tratamento
10.
Mediators Inflamm ; 2016: 2856213, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27597803

RESUMO

Inflammation is a response to infections or tissue injuries. Inflammation was once defined by clinical signs, later by the presence of leukocytes, and nowadays by expression of "proinflammatory" cytokines and chemokines. But leukocytes and cytokines often have rather anti-inflammatory, proregenerative, and homeostatic effects. Is there a need to redefine "inflammation"? In this review, we discuss the functions of "inflammatory" mediators/regulators of the innate immune system that determine tissue environments to fulfill the need of the tissue while regaining homeostasis after injury.


Assuntos
Sistema Imunitário/metabolismo , Inflamação/metabolismo , Animais , Homeostase/fisiologia , Humanos , Imunidade Inata/fisiologia , Inflamação/imunologia
11.
J Am Soc Nephrol ; 26(10): 2399-413, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25644111

RESUMO

Severe GN involves local neutrophil extracellular trap (NET) formation. We hypothesized a local cytotoxic effect of NET-related histone release in necrotizing GN. In vitro, histones from calf thymus or histones released by neutrophils undergoing NETosis killed glomerular endothelial cells, podocytes, and parietal epithelial cells in a dose-dependent manner. Histone-neutralizing agents such as antihistone IgG, activated protein C, or heparin prevented this effect. Histone toxicity on glomeruli ex vivo was Toll-like receptor 2/4 dependent, and lack of TLR2/4 attenuated histone-induced renal thrombotic microangiopathy and glomerular necrosis in mice. Anti-glomerular basement membrane GN involved NET formation and vascular necrosis, whereas blocking NET formation by peptidylarginine inhibition or preemptive anti-histone IgG injection significantly reduced all aspects of GN (i.e., vascular necrosis, podocyte loss, albuminuria, cytokine induction, recruitment or activation of glomerular leukocytes, and glomerular crescent formation). To evaluate histones as a therapeutic target, mice with established GN were treated with three different histone-neutralizing agents. Anti-histone IgG, recombinant activated protein C, and heparin were equally effective in abrogating severe GN, whereas combination therapy had no additive effects. Together, these results indicate that NET-related histone release during GN elicits cytotoxic and immunostimulatory effects. Furthermore, neutralizing extracellular histones is still therapeutic when initiated in established GN.


Assuntos
Vasos Sanguíneos/patologia , Armadilhas Extracelulares/fisiologia , Glomerulonefrite/complicações , Histonas/fisiologia , Animais , Bovinos , Armadilhas Extracelulares/efeitos dos fármacos , Glomerulonefrite/tratamento farmacológico , Glomerulonefrite/etiologia , Histonas/efeitos dos fármacos , Camundongos , Necrose/etiologia , Índice de Gravidade de Doença
12.
Ann Rheum Dis ; 74(2): 452-63, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24300027

RESUMO

OBJECTIVES: Major histocompatibility complex (MHC) class II-mediated priming of T and B lymphocytes is a central element of autoimmunity in systemic lupus erythematosus (SLE) and lupus nephritis. The cysteine protease cathepsin S degrades the invariant peptide chain during MHC II assembly with antigenic peptide in antigen-presenting cells; therefore, we hypothesised that cathepsin S inhibition would be therapeutic in SLE. METHODS: We developed a highly specific small molecule, orally available, cathepsin S antagonist, RO5461111, with suitable pharmacodynamic and pharmacokinetic properties that efficiently suppressed antigen-specific T cell and B cell priming in vitro and in vivo. RESULTS: When given to MRL-Fas(lpr) mice with SLE and lupus nephritis, RO5461111 significantly reduced the activation of spleen dendritic cells and the subsequent expansion and activation of CD4 T cells and CD4/CD8 double-negative T cells. Cathepsin S inhibition impaired the spatial organisation of germinal centres, suppressed follicular B cell maturation to plasma cells and Ig class switch. This reversed hypergammaglobulinemia and significantly suppressed the plasma levels of numerous IgG (but not IgM) autoantibodies below baseline, including anti-dsDNA. This effect was associated with less glomerular IgG deposits, which protected kidneys from lupus nephritis. CONCLUSIONS: Together, cathepsin S promotes SLE by driving MHC class II-mediated T and B cell priming, germinal centre formation and B cell maturation towards plasma cells. These afferent immune pathways can be specifically reversed with the cathepsin S antagonist RO5461111, which prevents lupus nephritis progression even when given after disease onset. This novel therapeutic strategy could correct a common pathomechanism of SLE and other immune complex-related autoimmune diseases.


Assuntos
Catepsinas/antagonistas & inibidores , Imunossupressores/farmacologia , Lúpus Eritematoso Sistêmico/imunologia , Nefrite Lúpica/imunologia , Ativação Linfocitária/efeitos dos fármacos , Prolina/análogos & derivados , Animais , Linfócitos B/imunologia , Western Blotting , Linfócitos T CD4-Positivos/imunologia , Modelos Animais de Doenças , Ensaio de Imunoadsorção Enzimática , Feminino , Citometria de Fluxo , Antígenos de Histocompatibilidade Classe I/imunologia , Imunoglobulina G/sangue , Imunoglobulina G/imunologia , Ativação Linfocitária/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos MRL lpr , Prolina/farmacologia , Reação em Cadeia da Polimerase em Tempo Real
13.
Ann Rheum Dis ; 74(12): 2224-35, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25135254

RESUMO

OBJECTIVES: The NLRP3/ASC inflammasome drives host defence and autoinflammatory disorders by activating caspase-1 to trigger the secretion of mature interleukin (IL)-1ß/IL-18, but its potential role in autoimmunity is speculative. METHODS: We generated and phenotyped Nlrp3-deficient, Asc-deficient, Il-1r-deficient and Il-18-deficient C57BL/6-lpr/lpr mice, the latter being a mild model of spontaneous lupus-like autoimmunity. RESULTS: While lack of IL-1R or IL-18 did not affect the C57BL/6-lpr/lpr phenotype, lack of NLRP3 or ASC triggered massive lymphoproliferation, lung T cell infiltrates and severe proliferative lupus nephritis within 6 months, which were all absent in age-matched C57BL/6-lpr/lpr controls. Lack of NLRP3 or ASC increased dendritic cell and macrophage activation, the expression of numerous proinflammatory mediators, lymphocyte necrosis and the expansion of most T cell and B cell subsets. In contrast, plasma cells and autoantibody production were hardly affected. This unexpected immunosuppressive effect of NLRP3 and ASC may relate to their known role in SMAD2/3 phosphorylation during tumour growth factor (TGF)-ß receptor signalling, for example, Nlrp3-deficiency and Asc-deficiency significantly suppressed the expression of numerous TGF-ß target genes in C57BL/6-lpr/lpr mice and partially recapitulated the known autoimmune phenotype of Tgf-ß1-deficient mice. CONCLUSIONS: These data identify a novel non-canonical immunoregulatory function of NLRP3 and ASC in autoimmunity.


Assuntos
Proteínas Reguladoras de Apoptose/genética , Autoimunidade , Proteínas de Transporte/genética , DNA/genética , Regulação da Expressão Gênica , Nefrite Lúpica/imunologia , Animais , Proteínas Reguladoras de Apoptose/biossíntese , Western Blotting , Proteínas Adaptadoras de Sinalização CARD , Proteínas de Transporte/biossíntese , Células Cultivadas , Nefrite Lúpica/genética , Nefrite Lúpica/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Proteína 3 que Contém Domínio de Pirina da Família NLR , Reação em Cadeia da Polimerase em Tempo Real , Transdução de Sinais
14.
J Am Soc Nephrol ; 25(5): 978-89, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24459235

RESUMO

AKI involves early Toll-like receptor (TLR)-driven immunopathology, and resolution of inflammation is needed for rapid regeneration of injured tubule cells. Notably, activation of TLRs also has been implicated in epithelial repair. We hypothesized that TLR signaling drives tubule regeneration after acute injury through the induction of certain ILs. Systematic screening in vitro identified IL-22 as a candidate proregeneratory factor in primary tubular cell recovery, and IL-22 deficiency or IL-22 blockade impaired post-ischemic tubular recovery after AKI in mice. Interstitial mononuclear cells, such as dendritic cells and macrophages, were the predominant source of IL-22 secretion, whereas IL-22 receptor was expressed by tubular epithelial cells exclusively. Depleting IL-22-producing cells during the healing phase impaired epithelial recovery, which could be rescued entirely by reconstituting mice with IL-22. In vitro, necrotic tubular cells and oxidative stress induced IL-22 secretion selectively through TLR4. Although TLR4 blockade during the early injury phase prevented tubular necrosis and AKI, TLR4 blockade during the healing phase suppressed IL-22 production and impaired kidney regeneration. Taken together, these results suggest that necrotic cell-derived TLR4 agonists activate intrarenal mononuclear cells to secrete IL-22, which accelerates tubular regeneration and recovery in AKI.


Assuntos
Injúria Renal Aguda/terapia , Interleucinas/biossíntese , Túbulos Renais/patologia , Regeneração/fisiologia , Traumatismo por Reperfusão/terapia , Receptor 4 Toll-Like/fisiologia , Urotélio/patologia , Injúria Renal Aguda/metabolismo , Injúria Renal Aguda/patologia , Animais , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Interleucinas/metabolismo , Janus Quinases/metabolismo , Túbulos Renais/citologia , Sistema de Sinalização das MAP Quinases/fisiologia , Camundongos , Camundongos Endogâmicos C57BL , Sistema Fagocitário Mononuclear/metabolismo , Sistema Fagocitário Mononuclear/patologia , Traumatismo por Reperfusão/metabolismo , Traumatismo por Reperfusão/patologia , Fator de Transcrição STAT3/metabolismo , Urotélio/citologia , Interleucina 22
15.
J Pathol ; 230(3): 322-35, 2013 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-23749457

RESUMO

Podocyte apoptosis as a pathway of podocyte loss is often suspected but rarely detected. To study podocyte apoptosis versus inflammatory forms of podocyte death in vivo, we targeted murine double minute (MDM)-2 for three reasons. First, MDM2 inhibits p53-dependent apoptosis; second, MDM2 facilitates NF-κB signalling; and third, podocytes show strong MDM2 expression. We hypothesized that blocking MDM2 during glomerular injury may trigger p53-mediated podocyte apoptosis, proteinuria, and glomerulosclerosis. Unexpectedly, MDM2 blockade in early adriamycin nephropathy of Balb/c mice had the opposite effect and reduced intra-renal cytokine and chemokine expression, glomerular macrophage and T-cell counts, and plasma creatinine and blood urea nitrogen levels. In cultured podocytes exposed to adriamycin, MDM2 blockade did not trigger podocyte death but induced G2/M arrest to prevent aberrant nuclear divisions and detachment of dying aneuploid podocytes, a feature of mitotic catastrophe in vitro and in vivo. Consistent with these observations, 12 of 164 consecutive human renal biopsies revealed features of podocyte mitotic catastrophe but only in glomerular disorders with proteinuria. Furthermore, delayed MDM2 blockade reduced plasma creatinine levels, blood urea nitrogen, tubular atrophy, interstitial leukocyte numbers, and cytokine expression as well as interstitial fibrosis. Together, MDM2-mediated mitotic catastrophe is a previously unrecognized variant of podocyte loss where MDM2 forces podocytes to complete the cell cycle, which in the absence of cytokinesis leads to podocyte aneuploidy, mitotic catastrophe, and loss by detachment. MDM2 blockade with nutlin-3a could be a novel therapeutic strategy to prevent renal inflammation, podocyte loss, glomerulosclerosis, proteinuria, and progressive kidney disease.


Assuntos
Doxorrubicina/toxicidade , Glomerulonefrite/patologia , Podócitos/fisiologia , Proteínas Proto-Oncogênicas c-mdm2/metabolismo , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Animais , Apoptose/efeitos dos fármacos , Criança , Progressão da Doença , Células Epiteliais/metabolismo , Feminino , Regulação da Expressão Gênica , Glomerulonefrite/induzido quimicamente , Glomerulonefrite/tratamento farmacológico , Glomerulonefrite/fisiopatologia , Humanos , Imidazóis/farmacologia , Lactente , Rim/metabolismo , Rim/patologia , Rim/ultraestrutura , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Pessoa de Meia-Idade , Mitose/efeitos dos fármacos , Piperazinas/farmacologia , Podócitos/efeitos dos fármacos , Podócitos/metabolismo , Podócitos/patologia , Proteinúria , Proteínas Proto-Oncogênicas c-mdm2/antagonistas & inibidores , Transdução de Sinais , Proteína Supressora de Tumor p53/metabolismo , Adulto Jovem
16.
Kidney Int ; 83(4): 647-61, 2013 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-23325083

RESUMO

Ischemia-reperfusion activates innate immunity and sterile inflammation, resulting in acute kidney injury. Since pentraxin 3 (PTX3) regulates multiple aspects of innate immunity and tissue inflammation, we tested whether PTX3 would be involved in renal ischemia-reperfusion injury. Renal pedicle clamping increased PTX3 serum levels, as well as PTX3 expression, inside the kidney but predominantly in CD45/CD11c(+) cells, a subpopulation of intrarenal mononuclear phagocytes. Lack of PTX3 aggravated postischemic acute kidney injury as evidenced by massive tubular necrosis, and TNF and IL-6 release, as well as massively increased neutrophil and macrophage infiltrates at 24 h. This was followed by tubular atrophy, interstitial fibrosis, and kidney shrinking 10 weeks later. In vivo microscopy uncovered increased leukocyte adhesion and transmigration in postischemic microvessels of Ptx3-deficient mice. Furthermore, injection of recombinant PTX3 up to 6 h after reperfusion prevented renal leukocyte recruitment and postischemic kidney injury. Thus, local PTX3 release from a subpopulation of intrarenal mononuclear phagocytes or delayed PTX3 treatment limits postischemic renal inflammation. Conversely, Ptx3 loss-of-function mutations predispose to postischemic acute kidney injury and subsequent chronic kidney disease.


Assuntos
Injúria Renal Aguda/prevenção & controle , Proteína C-Reativa/metabolismo , Rim/irrigação sanguínea , Rim/imunologia , Proteínas do Tecido Nervoso/metabolismo , Insuficiência Renal Crônica/prevenção & controle , Traumatismo por Reperfusão/prevenção & controle , Injúria Renal Aguda/sangue , Injúria Renal Aguda/genética , Injúria Renal Aguda/imunologia , Injúria Renal Aguda/patologia , Animais , Atrofia , Proteína C-Reativa/administração & dosagem , Proteína C-Reativa/deficiência , Proteína C-Reativa/genética , Células Cultivadas , Modelos Animais de Doenças , Feminino , Fibrose , Mediadores da Inflamação/metabolismo , Injeções , Interleucina-6/metabolismo , Rim/patologia , Necrose Tubular Aguda/imunologia , Necrose Tubular Aguda/patologia , Necrose Tubular Aguda/prevenção & controle , Leucócitos/imunologia , Macrófagos/imunologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Proteínas do Tecido Nervoso/administração & dosagem , Proteínas do Tecido Nervoso/sangue , Proteínas do Tecido Nervoso/deficiência , Proteínas do Tecido Nervoso/genética , Infiltração de Neutrófilos , Selectina-P/metabolismo , Proteínas Recombinantes/administração & dosagem , Insuficiência Renal Crônica/sangue , Insuficiência Renal Crônica/genética , Insuficiência Renal Crônica/imunologia , Insuficiência Renal Crônica/patologia , Traumatismo por Reperfusão/sangue , Traumatismo por Reperfusão/genética , Traumatismo por Reperfusão/imunologia , Traumatismo por Reperfusão/patologia , Fatores de Tempo , Migração Transendotelial e Transepitelial , Fator de Necrose Tumoral alfa/metabolismo
17.
J Immunol ; 187(6): 3413-21, 2011 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-21849682

RESUMO

Systemic lupus erythematosus (SLE) is a chronic autoimmune disease leading to inflammatory tissue damage in multiple organs (e.g., lupus nephritis). Current treatments including steroids, antimalarials, and immunosuppressive drugs have significant side effects. Activated protein C is a natural protein with anticoagulant and immunomodulatory effects, and its recombinant version has been approved by the U.S. Food and Drug Administration to treat severe sepsis. Given the similarities between overshooting immune activation in sepsis and autoimmunity, we hypothesized that recombinant activated protein C would also suppress SLE and lupus nephritis. To test this concept, autoimmune female MRL-Fas(lpr) mice were injected with either vehicle or recombinant human activated protein C from week 14-18 of age. Activated protein C treatment significantly suppressed lupus nephritis as evidenced by decrease in activity index, glomerular IgG and complement C3 deposits, macrophage counts, as well as intrarenal IL-12 expression. Further, activated protein C attenuated cutaneous lupus and lung disease as compared with vehicle-treated MRL-Fas(lpr) mice. In addition, parameters of systemic autoimmunity, such as plasma cytokine levels of IL-12p40, IL-6, and CCL2/MCP-1, and numbers of B cells and plasma cells in spleen were suppressed by activated protein C. The latter was associated with lower total plasma IgM and IgG levels as well as lower titers of anti-dsDNA IgG and rheumatoid factor. Together, recombinant activated protein C suppresses the abnormal systemic immune activation in SLE of MRL-Fas(lpr) mice, which prevents subsequent kidney, lung, and skin disease. These results implicate that recombinant activated protein C might be useful for the treatment of human SLE.


Assuntos
Anti-Inflamatórios/uso terapêutico , Lúpus Eritematoso Sistêmico/tratamento farmacológico , Proteína C/uso terapêutico , Animais , Autoanticorpos/sangue , Separação Celular , Citocinas/análise , Citocinas/sangue , Modelos Animais de Doenças , Ensaio de Imunoadsorção Enzimática , Feminino , Citometria de Fluxo , Humanos , Imunoglobulina G/sangue , Lúpus Eritematoso Sistêmico/imunologia , Lúpus Eritematoso Sistêmico/patologia , Nefrite Lúpica/tratamento farmacológico , Nefrite Lúpica/imunologia , Nefrite Lúpica/patologia , Camundongos , Camundongos Endogâmicos MRL lpr , Proteínas Recombinantes/uso terapêutico , Reação em Cadeia da Polimerase Via Transcriptase Reversa
18.
Curr Opin Rheumatol ; 24(5): 457-65, 2012 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-22810362

RESUMO

PURPOSE OF REVIEW: Lupus nephritis is a complex autoimmune disease that develops its own dynamic upon damaging the renal ultrastructure. Here, we summarize the latest pathophysiological concepts of lupus nephritis and how these translate into novel therapeutic options. RECENT FINDINGS: Multidisciplinary research activities form a better understanding about how lupus develops from an unfortunate combination of gene variants that promote the loss of tolerance, that impair the clearance of dying cells, that regulate the immune interpretation of autoantigens as well as the peripheral control of autoreactive lymphocytes. As a new entry, nuclear particles also act as autoadjuvants mimicking viral particles and triggering interferon-alpha-dependent antiviral immune responses that cause symptoms similar to viral infection. SUMMARY: A set of novel drugs have the potential to more specifically interfere with these pathomechanisms and raise hope to more efficiently treat lupus nephritis with fewer side-effects in the near future.


Assuntos
Nefrite Lúpica/etiologia , Nefrite Lúpica/terapia , Autoimunidade , Linfócitos B/imunologia , Humanos , Imunossupressores/uso terapêutico , Imunoterapia , Lúpus Eritematoso Sistêmico/etiologia , Lúpus Eritematoso Sistêmico/imunologia , Nefrite Lúpica/imunologia , Nefrite Lúpica/patologia , Modelos Imunológicos , Linfócitos T/imunologia
19.
Am J Pathol ; 179(1): 116-24, 2011 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-21703397

RESUMO

Monocyte/ chemoattractant protein-1/chemokine ligand (CCL) 2 and stromal cell-derived factor-1/CXCL12 both contribute to glomerulosclerosis in mice with type 2 diabetes mellitus, through different mechanisms. CCL2 mediates macrophage-related inflammation, whereas CXCL12 contributes to podocyte loss. Therefore, we hypothesized that dual antagonism of these chemokines might have additive protective effects on the progression of diabetic nephropathy. We used chemokine antagonists based on structured l-enantiomeric RNA (so-called Spiegelmers) ie, the CCL2-specific mNOX-E36 and the CXCL12-specific NOX-A12. Male db/db mice, uninephrectomized at the age of 6 weeks, received injections of Spiegelmer, both Spiegelmers, nonfunctional control Spiegelmer, or vehicle from the age of 4 months for 8 weeks. Dual blockade was significantly more effective than monotherapy in preventing glomerulosclerosis. CCL2 blockade reduced glomerular leukocyte counts and renal-inducible nitric oxide synthase or IL-6 mRNA expression. CXCL12 blockade maintained podocyte numbers and renal nephrin and podocin mRNA expression. Consistently, CXCL12 blockade suppressed nephrin mRNA up-regulation in primary cultures of human glomerular progenitors induced to differentiate toward the podocyte lineage. All previously mentioned parameters were significantly improved in the dual-blockade group, which also suppressed proteinuria and was associated with the highest levels of glomerular filtration rate. Blood glucose levels and body weight were identical in all treatment groups. Dual chemokine blockade can have additive effects on the progression of diabetic kidney disease when the respective chemokine targets mediate different pathomechanisms of disease (ie, inflammation and progenitor differentiation toward the podocyte lineage).


Assuntos
Quimiocina CCL2/antagonistas & inibidores , Quimiocina CXCL12/antagonistas & inibidores , Diabetes Mellitus Tipo 2/fisiopatologia , Nefropatias Diabéticas/prevenção & controle , Glomerulonefrite/prevenção & controle , Animais , Western Blotting , Células Cultivadas , Quimiocina CCL2/metabolismo , Quimiocina CXCL12/metabolismo , Nefropatias Diabéticas/metabolismo , Nefropatias Diabéticas/patologia , Taxa de Filtração Glomerular , Glomerulonefrite/metabolismo , Glomerulonefrite/patologia , Técnicas Imunoenzimáticas , Interleucina-6/genética , Interleucina-6/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/genética , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Glomérulos Renais/metabolismo , Glomérulos Renais/patologia , Masculino , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Obesos , Óxido Nítrico Sintase Tipo II/genética , Óxido Nítrico Sintase Tipo II/metabolismo , Podócitos/metabolismo , Podócitos/patologia , RNA Mensageiro/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Células-Tronco/metabolismo
20.
Nephrol Dial Transplant ; 27(4): 1358-67, 2012 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-21987536

RESUMO

BACKGROUND: Systemic lupus erythematosus (SLE) is still treated with global immunosuppressants with serious toxicities. We hypothesized that endogenous immunosuppressive molecules might be able to control SLE manifestations more specifically. Heat shock protein 10, or chaperonin 10 (Cpn10), is a secretory molecule that can suppress innate and adaptive immunity. METHODS: Recombinant human Cpn10 (100 µg per mouse) was given intraperitoneally to healthy-appearing female MRL-(Fas)lpr mice from 12 to 22 weeks of age. At the age of 22 weeks, mice were analysed for treatment outcome by harvesting organs, plasma and urine. RESULTS: Cpn10 entirely prevented cutaneous lupus lesions as compared to vehicle-treated mice. Cpn10 also suppressed lupus nephritis as evident from serum creatinine levels, albuminuria and the scores of disease activity and chronicity. Autoimmune lung disease was unaffected by Cpn10 treatment while overall survival of mice was prolonged. Cpn10 did not have any major effects on either dendritic cell or B-cell counts except T cells in spleen, plasma interferon-gamma, tumour necrosis factor-alpha, interleukin-10, anti-nuclear autoantibody levels or markers of lymphoproliferation. CONCLUSIONS: In summary, recombinant Cpn10 selectively prevents cutaneous lupus and suppresses nephritis in MRL-(Fas)lpr mice without affecting the underlying systemic autoimmune process. Hence, Cpn10 might be useful for the treatment of skin and kidney manifestations of SLE.


Assuntos
Chaperonina 10/fisiologia , Lúpus Eritematoso Cutâneo/prevenção & controle , Nefrite Lúpica/prevenção & controle , Proteínas Recombinantes/metabolismo , Animais , Autoanticorpos/sangue , Western Blotting , Chaperonina 10/química , Feminino , Citometria de Fluxo , Humanos , Lúpus Eritematoso Cutâneo/genética , Lúpus Eritematoso Cutâneo/imunologia , Nefrite Lúpica/genética , Nefrite Lúpica/imunologia , Camundongos , Camundongos Endogâmicos MRL lpr , Conformação Proteica , RNA Mensageiro/genética , Reação em Cadeia da Polimerase em Tempo Real , Proteínas Recombinantes/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA