Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Proc Biol Sci ; 280(1762): 20130721, 2013 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-23677347

RESUMO

Bacteria present in natural environments such as soil have evolved multiple strategies to escape predation. We report that natural isolates of Enterobacteriaceae that actively hydrolyze plant-derived aromatic ß-glucosides such as salicin, arbutin and esculin, are able to avoid predation by the bacteriovorous amoeba Dictyostelium discoideum and nematodes of multiple genera belonging to the family Rhabditidae. This advantage can be observed under laboratory culture conditions as well as in the soil environment. The aglycone moiety released by the hydrolysis of ß-glucosides is toxic to predators and acts via the dopaminergic receptor Dop-1 in the case of Caenorhabditis elegans. While soil isolates of nematodes belonging to the family Rhabditidae are repelled by the aglycone, laboratory strains and natural isolates of Caenorhabditis sp. are attracted to the compound, mediated by receptors that are independent of Dop-1, leading to their death. The ß-glucosides-positive (Bgl(+)) bacteria that are otherwise non-pathogenic can obtain additional nutrients from the dead predators, thereby switching their role from prey to predator. This study also offers an evolutionary explanation for the retention by bacteria of 'cryptic' or 'silent' genetic systems such as the bgl operon.


Assuntos
Dictyostelium/fisiologia , Enterobacteriaceae/fisiologia , Cadeia Alimentar , Glucosídeos/metabolismo , Nematoides/fisiologia , Animais , Caenorhabditis elegans/fisiologia , Quimiotaxia , Hidrólise , Índia , Especificidade da Espécie
2.
Genetics ; 219(3)2021 11 05.
Artigo em Inglês | MEDLINE | ID: mdl-34740241

RESUMO

Neuronal regeneration after injury depends on the intrinsic growth potential of neurons. Our study shows that UNC-16, a Caenorhabditis elegans JIP3 homolog, inhibits axonal regeneration by regulating initiation and rate of regrowth. This occurs through the inhibition of the regeneration-promoting activity of the long isoform of DLK-1 and independently of the inhibitory short isoform of DLK-1. We show that UNC-16 promotes DLK-1 punctate localization in a concentration-dependent manner limiting the availability of the long isoform of DLK-1 at the cut site, minutes after injury. UNC-16 negatively regulates actin dynamics through DLK-1 and microtubule dynamics partially via DLK-1. We show that post-injury cytoskeletal dynamics in unc-16 mutants are also partially dependent on CEBP-1. The faster regeneration seen in unc-16 mutants does not lead to functional recovery. Our data suggest that the inhibitory control by UNC-16 and the short isoform of DLK-1 balances the intrinsic growth-promoting function of the long isoform of DLK-1 in vivo. We propose a model where UNC-16's inhibitory role in regeneration occurs through both a tight temporal and spatial control of DLK-1 and cytoskeletal dynamics.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/fisiologia , MAP Quinase Quinase Quinases/metabolismo , Regeneração Nervosa , Neurônios/fisiologia , Actinas/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/genética , Animais , Animais Geneticamente Modificados , Proteínas de Caenorhabditis elegans/genética , Microtúbulos/metabolismo , Modelos Animais , Mutação , Isoformas de Proteínas/metabolismo , Análise Espaço-Temporal
3.
Opt Express ; 16(13): 9884-94, 2008 Jun 23.
Artigo em Inglês | MEDLINE | ID: mdl-18575558

RESUMO

Nanosecond laser pulses (lambda = 355 nm) were used to cut mechanosensory neurons in Caenorhabditis elegans and motorneurons in Drosophila melanogaster larvae. A pulse energy range of 0.8-1.2 microJ and < 20 pulses in single shot mode were sufficient to generate axonal cuts. Viability post-surgery was >95% for C. elegans and 60% for Drosophila. Cavitation bubble dynamics generated due to laser-induced plasma formation were observed in vivo by time-resolved imaging in both organisms. Bubble oscillations were severely damped in vivo and cavitation dynamics were complete within 100 ns in C. elegans and 800 ns in Drosophila. We report the use of this system to study axonal transport for the first time and discuss advantages of nanosecond lasers compared to femtosecond sources for such procedures.


Assuntos
Axotomia/instrumentação , Terapia a Laser/instrumentação , Microcirurgia/instrumentação , Nanotecnologia/instrumentação , Vesículas Sinápticas/fisiologia , Vesículas Sinápticas/ultraestrutura , Transporte Biológico Ativo/fisiologia , Desenho de Equipamento , Análise de Falha de Equipamento , Nanotecnologia/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA