RESUMO
This study aimed to develop and optimize formulations containinga BCS Class IV drug by improving its solubility and permeability. Herein development of self-emulsifying solid lipid matrices was investigated as carrier systems for a BCS Class IV model drug. Self-emulsifying drug delivery systems (SEDDS) have been extensively investigated for formulating drugs with poor water solubility. However, manufacturing SEDDS is challenging. These systems usually have low drug-loading capacities, and the incorporated drugs tend to recrystallize during storage, which severely impacts the storage stability in vitro and performance in vivo. Moreover, they require greater amounts (>80%) of lipid carriers, cosolvents, surfactants, and other excipients to keep them from recrystallizing. This in turn is again challenging for high-dose drugs as it affects the size of the final drug product (tablets and capsules). Also, the final liquid nature of the formulation affects the handling and processability of the formulation, which poses challenges during the manufacturing and packaging steps. In this work, we have studied the feasibility of a single-step extrusion process to formulate and optimize solid self-emulsifying granules with a relatively higher drug loading of Ritonavir (RTV), a BCS Class IV drug. Further, we have compared the performance of using these granules as the feedstock for direct powder extrusion-based 3D printing as opposed to the use of physical blends. The stability and solubility-permeability advantage of these granules was also evaluated where SEDDS showed about 27 and 20 fold increase in apparent solublity and permeability compared to bulk drug, respectively. Combining the capabilities of HME to form drug-loaded homogeneous granules as a continuous process along with application of direct printing extruiosn (DPE) 3D printing improves the drug delivery prospects for such candidates.
RESUMO
3D printed drug delivery systems have gained tremendous attention in pharmaceutical research due to their inherent benefits over conventional systems, such as provisions for customized design and personalized dosing. The present study demonstrates a novel approach of drop-on-demand (DoD) droplet deposition to dispense drug solutions precisely on binder jetting-based 3D printed multi-compartment tablets containing 3 model anti-viral drugs (hydroxychloroquine sulfate - HCS, ritonavir and favipiravir). The printing pressure affected the printing quality whereas the printing speed and infill density significantly impacted the volume dispersed on the tablets. Additionally, the DoD parameters such as nozzle valve open time and cycle time affected both dispersing volume and the uniformity of the tablets. The solid-state characterization, including DSC, XRD, and PLM, revealed that all drugs remained in their crystalline forms. Advanced surface analysis conducted by microCT imaging as well as Artificial Intelligence (AI)/Deep Learning (DL) model validation showed a homogenous drug distribution in the printed tablets even at ultra-low doses. For a four-hour in vitro drug release study, the drug loaded in the outer layer was released over 90%, and the drug incorporated in the middle layer was released over 70%. In contrast, drug encapsulated in the core was only released about 40%, indicating that outer and middle layers were suitable for immediate release while the core could be applied for delayed release. Overall, this study demonstrates a great potential for tailoring drug release rates from a customized modular dosage form and developing personalized drug delivery systems coupling different 3D printing techniques.
Assuntos
Antivirais , Tecnologia Farmacêutica , Humanos , Tecnologia Farmacêutica/métodos , Inteligência Artificial , Comprimidos/química , Excipientes/química , Liberação Controlada de Fármacos , Impressão TridimensionalRESUMO
With the advancements in cutting-edge technologies and rapid development of medical sciences, patient-focused drug development (PFDD) through additive manufacturing (AM) processes is gathering more interest in the pharmaceutical area than ever. Hence, there is an urgent need for researchers to comprehensively understand the influence of three-dimensional design on the development of novel drug delivery systems (DDSs). For this research, fused deposition modeling (FDM) 3D printing was investigated, and phenytoin (PHT) was selected as the model drug. The primary purpose of the current investigation was to understand the influence of AM process on the pharmaceutical products' quality. A series of comparative studies, including morphology, solid-state analysis, and in vitro drug release studies between additive manufactured filaments (printlets) and extruded filaments, were conducted. The FDM-based AM showed adequate reproducibility by manufacturing printlets with consistent qualities; however, the model slicing orientation significantly affected the print qualities. The texture analysis studies showed that the mechanical properties (breaking behavior) of additive manufactured printlets were varied from the extruded filaments. Additionally, the higher printing temperature also influenced the solid state of the drug where the process assisted in PHT's amorphization in the printed products, which further affected their mechanical properties and in vitro drug release performances. The current investigation illustrated that the AM process would change the printed objects' macrostructure over the conventional products, and the printing temperature and slicing will significantly affect the printing process and product qualities.
Assuntos
Excipientes , Tecnologia Farmacêutica , Liberação Controlada de Fármacos , Humanos , Impressão Tridimensional , Reprodutibilidade dos Testes , Comprimidos , TemperaturaRESUMO
Eye disorders affect a substantial portion of the global population, yet the availability of efficacious ophthalmic drug products remains limited. This can be partly ascribed to a number of factors: (1) inadequate understanding of physiological barriers, treatment strategies, drug and polymer properties, and delivery systems; (2) challenges in effectively delivering drugs to the anterior and posterior segments of the eye due to anatomical and physiological constraints; and (3) manufacturing and regulatory hurdles in ocular drug product development. The present review discusses innovative ocular delivery and treatments, encompassing implants, liposomes, nanoparticles, nanomicelles, microparticles, iontophoresis, in situ gels, contact lenses, microneedles, hydrogels, bispecific antibodies, and gene delivery strategies. Furthermore, this review also introduces advanced manufacturing technologies such as 3D printing and hot-melt extrusion (HME), aimed at improving bioavailability, reducing therapeutic dosages and side effects, facilitating the design of personalized ophthalmic dosage forms, as well as enhancing patient compliance. This comprehensive review lastly offers insights into digital healthcare, market trends, and industry and regulatory perspectives pertaining to ocular product development.
RESUMO
Three-dimensional (3D) printing of pharmaceuticals has been centered around the idea of personalized patient-based 'on-demand' medication. Fused deposition modeling (FDM)-based 3D printing processes provide the capability to create complex geometrical dosage forms. However, the current FDM-based processes are associated with printing lag time and manual interventions. The current study tried to resolve this issue by utilizing the dynamic z-axis to continuously print drug-loaded printlets. Fenofibrate (FNB) was formulated with hydroxypropyl methylcellulose (HPMC AS LG) into an amorphous solid dispersion using the hot-melt extrusion (HME) process. Thermal and solid-state analyses were used to confirm the amorphous state of the drug in both polymeric filaments and printlets. Printlets with a 25, 50, and 75% infill density were printed using the two printing systems, i.e., continuous, and conventional batch FDM printing methods. Differences between the two methods were observed in the breaking force required to break the printlets, and these differences reduced as the infill density went up. The effect on in vitro release was significant at lower infill densities but reduced at higher infill densities. The results obtained from this study can be used to understand the formulation and process control strategies when switching from conventional FDM to the continuous printing of 3D-printed dosage forms.
RESUMO
This research demonstrates the use of fused deposition modeling (FDM) 3D printing to control the delivery of multiple drugs containing bioactive self-nano emulsifying drug-delivery systems (SNEDDSs). Around two-thirds of the new chemical entities being introduced in the market are associated with some inherent issues, such as poor solubility and high lipophilicity. SNEDDSs provide for an innovative and easy way to develop a delivery platform for such drugs. Combining this platform with FDM 3D printing would further aid in developing new strategies for delivering poorly soluble drugs and personalized drug-delivery systems with added therapeutic benefits. This study evaluates the performance of a 3D-printed container system containing curcumin (CUR)- and lansoprazole (LNS)-loaded SNEDDS. The SNEDDS showed 50% antioxidant activity (IC50) at concentrations of around 330.1 µg/mL and 393.3 µg/mL in the DPPH and ABTS radical scavenging assay, respectively. These SNEDDSs were loaded with no degradation and leakage from the 3D-printed container. We were able to delay the release of the SNEDDS from the hollow prints while controlling the print wall thickness to achieve lag phases of 30 min and 60 min before the release from the 0.4 mm and 1 mm wall thicknesses, respectively. Combining these two innovative drug-delivery strategies demonstrates a novel option for tackling the problems associated with multi-drug delivery and delivery of drugs susceptible to degradation in, i.e., gastric pH for targeting disease conditions throughout the gastrointestinal tract (GIT). It is also envisaged that such delivery systems reported herein can be an ideal solution to deliver many challenging molecules, such as biologics, orally or near the target site in the future, thus opening a new paradigm for multi-drug-delivery systems.
RESUMO
Niclosamide is an FDA-approved anthelmintic that is being studied in clinical trials as a chemotherapeutic and broad-spectrum antiviral. Additionally, several other applications are currently in the preclinical stage. Unfortunately, niclosamide is a poorly water soluble molecule, with reduced oral bioavailability, which hinders its use for new indications. Moreover, niclosamide is a poor glass former; in other words, the molecule has a high tendency to recrystallize, and it is virtually impossible to generate a stable amorphous solid employing the neat molecule. Previously, our group reported the development of an amorphous solid dispersion (ASD) of niclosamide (niclosamide ASD) that generates nanoparticles during its dissolution, not only increasing niclosamide's apparent solubility from 6.6 ± 0.4 to 481.7 ± 22.2 µg/mL in fasted state simulated intestinal fluid (FaSSIF) but also its oral bioavailability 2.6-fold in Sprague-Dawley rats after being administered as a suspension. Nevertheless, niclosamide ASD undergoes recrystallization in acidic media, and an enteric oral dosage form is needed for its translation into the clinic. In this work, we further characterized the nanoparticles that generated during the dissolution of the niclosamide ASD. Cryogenic transmission electron microscopy (Cryo-TEM) and wide-angle X-ray scattering (WAXS) revealed that the nanoparticles were amorphous and had a particle size of ~150 nm. The oral dosage forms of niclosamide ASD were formulated using commercial enteric capsules (Capsuline® and EudracapTM) and as enteric-coated tablets. The enteric dosage forms were tested using pH-shift dissolution and acid-uptake tests, using the USP type II dissolution apparatus and the disintegration apparatus, respectively. The capsules exhibited a higher percentage of weight gain, and visual rupture of the Capsuline capsules was observed. Eudracap capsules protected the formulation from the acidic media, but polymer gelling and the formation of a nondispersible plug were noted during dissolution testing. In contrast, enteric-coated tablets protected the formulation from acid ingress and maintained the performance of niclosamide ASD granules during dissolution in FaSSIF media. These enteric-coated tablets were administered to beagle dogs at a niclosamide dose of 75 mg/kg, resulting in plasma concentrations of niclosamide higher than those reported in the literature using solubilized niclosamide at a higher dose (i.e., 100 mg/kg). In summary, an enteric oral dosage form of niclosamide ASD was formulated without hindering the generation of nanoparticles while maintaining the increase in the niclosamide's apparent solubility. The enteric-coated tablets successfully increased the niclosamide plasma levels in dogs when compared to a niclosamide solution prepared using organic solvents.