Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 88
Filtrar
1.
Soft Matter ; 19(6): 1144-1151, 2023 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-36607604

RESUMO

Denaturation of protein solutions can be induced by higher temperatures and the presence of non-polar organic solutions. The denatured proteins form aggregates and gels through protein interactions occurring between their amino acid side chains. Depending on the involved side chains, the denaturation conditions lead to different gel properties. As model systems, a variety of food proteins were gelled through different mechanisms to cover a whole range of protein-protein interactions. Especially the temperature dependence of the viscoelastic properties in a simple rheometer method was found to be very different. These differences could be explained by the different thermodynamic properties of the involved protein-protein interactions. Electrostatic interactions were shown to weaken the resulting gel upon temperature increase whereas entropically driven interactions such as hydrophobic or covalent links were strengthened with increased temperatures. A proposed model explaining these results can be used to assess protein interactions in hydrogels in a non-invasive way and could also have applications to describe the temperature behavior of other hydrogels.


Assuntos
Hidrogéis , Proteínas , Temperatura , Géis/química , Hidrogéis/química , Temperatura Alta , Termodinâmica
2.
Compr Rev Food Sci Food Saf ; 21(3): 2118-2148, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35338578

RESUMO

Limitations of microwave processing due to inhomogeneities of power input and energy absorption have been widely described. Over- and underheated product areas influence reproducibility, product quality, and possibly safety. Although a broad range of methods is available for temperature measurement and evaluation of time/temperature effects, none of them is sufficiently able to detect temperature differences and thermally induced effects within the product caused by inhomogeneous heating. The purpose of this review is to critically assess different methods of temperature measurement for their suitability for different microwave applications, namely metallic temperature sensors, thermal imaging, pyrometer measurement, fiber optic sensors, microwave radiometry, magnetic resonance imaging, liquid crystal thermography, thermal paper, and biological and chemical time-temperature indicators. These methods are evaluated according to their advantages and limitations, method characteristics, and potential interference with the electric field. Special attention is given to spatial resolution, accuracy, handling, and purpose of measurement, that is, development work or online production control. Differences of methods and examples of practical application and failure in microwave-assisted food processing are discussed with a special focus on microwave pasteurization and microwave-assisted drying. Based on this assessment, it is suggested that infrared cameras for measuring temperature distribution at the product surface and partially inside the product in combination with a chemical time/temperature indicator (e.g., Maillard reaction, generating heat-induced color variations, depending on local energy absorption) appear to be the most appropriate system for future practical application in microwave food process control, microwave system development, and product design. Reliable detection of inhomogeneous heating is a prerequisite to counteracte inhomogeneity by a targeted adjustment of process and product parameters in microwave applications.


Assuntos
Calefação , Micro-Ondas , Temperatura Alta , Reprodutibilidade dos Testes , Temperatura
3.
Electrophoresis ; 42(24): 2599-2614, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-33314167

RESUMO

The application of monolithic materials as carriers for enzymes has rapidly expanded to the realization of flow-through analysis and bioconversion processes. This expansion is partly attributed to the absence from diffusion limitation in many monoliths-based enzyme reactors. Particularly, the relatively ease of introducing functional groups renders polymer monoliths attractive as enzyme carriers. After summarizing the motivation to develop enzymatic reactors using polymer monoliths, this review reports the most recent applications of such reactors. Besides, the present review focuses on the crucial characteristics of polymer monoliths affecting the immobilization of enzymes and the processing parameters dictating the performance of the resulting enzymatic reactors. This review is intended to provide a guideline for designing and applying flow-through enzymatic reactors using polymer monoliths.


Assuntos
Reatores Biológicos , Enzimas Imobilizadas , Polímeros , Motivação
4.
J Dairy Sci ; 104(9): 9505-9520, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34099303

RESUMO

The "creaming reaction," a general thickening of the molten cheese mass during the manufacture of processed cheese, which is often seen to occur in a stepwise fashion, affects the viscosity and texture of the finished product. Thus, this phenomenon is of critical importance for the processed cheese industry, yet mechanisms underlying the structure formation in this surprisingly complex and dynamic food system are only poorly understood. Using a model system consisting of micellar casein concentrate, vegetable oil, water, and a mixture of melting salts, we followed the characteristic viscosity profile with its primary and secondary increase over time. A rheometer equipped with a custom-made cup geometry was used, which served as a mini-reaction vessel to simulate the conditions during the manufacture of processed cheese. The mixture was subjected to constant heat (90°C) and stirring (7.93 rpm), comparable to processed cheese cooking, for up to 410 min. At specific time points, samples were taken, and the micro- and ultrastructure was investigated with light and transmission electron microscopy. Results from our extensive study uncovered the following key steps: (1) a decrease in fat globule size with concomitant increase in the number of fat globules, which were also more evenly distributed; (2) a progressive separation of the casein matrix into fibrillogenic and nonfibrillogenic fractions; (3) formation of fibrils and their higher-order structuring followed by their partial degradation; and (4) increasing interactions of the fibrils with the fat globule surface leading to a higher degree of emulsification. Of these different observations, results indicate that after the caseins dissociated under the influence of the melting salts, protein-protein interactions were the primary driver of the structure formation and thus contributed to the initial viscosity increase. Fat globules were involved in the structure formation at later time points. Therefore, fat-protein interactions in addition to continued protein-protein interactions were assumed to contribute to the secondary viscosity increase. An updated processed cheese creaming model is presented. The use of the term "texturization" instead of "creaming" is proposed.


Assuntos
Queijo , Animais , Caseínas , Queijo/análise , Manipulação de Alimentos , Microscopia Eletrônica de Transmissão/veterinária , Viscosidade
5.
J Dairy Sci ; 104(11): 11442-11456, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34389148

RESUMO

The effects of varying the concentration of pentasodium triphosphate (PP) emulsifying salt [0, 0.6, 1.2, 1.5, and 1.8%, plus 0.9% of a mixture of citric acid (CA) and disodium phosphate (DSP) to adjust cheese pH to 5.85] on rheological, textural, physicochemical, and microstructural properties were studied in a processed cheese model system containing ~20% micellar casein concentrate, ~20% sunflower oil, and ~59% water. Special emphasis was placed on the unique casein fibrils recently described in a comparable processed cheese model system. Our results show that during processing (90°C, 17.37 rpm over 270 min) the apparent viscosity increased more and faster for formulations containing higher concentrations of PP, in analogy to the so-called creaming reaction, a general thickening of the molten cheese mass with prolonged processing. We found that 1.2% PP (plus 0.9% CA-DSP) appeared to be the threshold for the creaming reaction to take place. With increasing PP concentrations, cheese hardness increased in a sigmoidal fashion, and insoluble (protein-bound) calcium concentration decreased exponentially. Light micrographs of samples taken at the end of processing indicated initially large and dense casein aggregates within the matrix that disappeared with higher levels of PP, in parallel with the development of a finer emulsion. With transmission electron microscopy analysis on the same samples, the highly complex restructuring of the casein matrix was evident; casein fibrils had formed de novo at the periphery of the loosening casein aggregates. With higher levels of PP, amorphous areas were observed in place of the dense casein aggregates that appeared progressively void of protein, whereas fibril concentration increased throughout the rest of the matrix. Fibrils progressively attached to the surface of fat globules, thereby emulsifying them. Reverse-phase HPLC analysis of insoluble and soluble fractions indicated κ-casein to be the most likely constituent of the newly formed fibrils. The results of this study suggest that PP induced a concentration-dependent dissociation of caseins (through increased calcium chelation) and further led to their spatial separation. In essence, their chaperone activity was hindered, which resulted in amorphous aggregation on the one hand and fibril formation on the other.


Assuntos
Queijo , Animais , Caseínas , Concentração de Íons de Hidrogênio , Polifosfatos , Viscosidade
6.
J Dairy Sci ; 103(12): 10986-11007, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33041027

RESUMO

The ability of milk and concentrated milk to withstand a defined heat treatment without noticeable changes such as flocculation of protein is commonly denoted as heat stability. A heat treatment that exceeds the heat stability limit of milk or concentrated milk, which has a much lower heat stability, may result in undesired changes, such as separation of milk fat, grittiness, sediment formation, and phase separation. Most laboratory-scale batch heating methods were developed in the early 20th century to simulate commercial sterilization, and these methods have since been standardized. Heat stability studies have been motivated by different objectives during that time, addressing different processing issues and targets in the framework of available technology, legislation, and consumer demand. Although milk hygiene has improved during the last couple of decades, rendering milk less sensitive to coagulation, different standard methods suffered from poor comparability of results, even when comparing results for the same milk sample, indicating that unknown procedural steps affect heat stability. The prediction of heat stability of concentrated milk from the heat stability results of the corresponding unconcentrated milk for rapid quality testing purposes has been difficult, mainly due to different experimental conditions. The objective of this study is to review literature on heat stability, starting from studies in the early 20th century, to summarize the vast number of studies on compositional aspects of milk affecting heat stability, and to lead the way to the most recent work related to compositional changes in concentrates produced by membrane concentration and fractionation, respectively. Particular attention is paid to early and most recent developments and findings, such as the application of kinetic models to predict and limit protein aggregation to assess and describe heat stability as a temperature-time-total milk solids continuum.


Assuntos
Temperatura Alta , Leite/química , Animais , Caseínas/metabolismo , Estabilidade de Medicamentos , Manipulação de Alimentos/métodos , Proteínas do Leite/química , Pasteurização/métodos
7.
Molecules ; 25(13)2020 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-32629775

RESUMO

The resistance formation of spores in general and of Bacillus atrophaeus in particular has long been the focus of science in the bio-defense, pharmaceutical and food industries. In the food industry, it is used as a biological indicator (BI) for the evaluation of the inactivation effects of hydrogen peroxide in processing and end packaging lines' sterilization. Defined BI resistances are critical to avoid false positive and negative tests, which are salient problems due to the variable resistance of currently available commercial BIs. Although spores for use as BIs have been produced for years, little is known about the influence of sporulation conditions on the resistance as a potential source of random variability. This study therefore examines the dependence of spore resistance on the temperature, pH and partial oxygen saturation during submerged production in a bioreactor. For this purpose, spores were produced under different sporulation conditions and their resistance, defined by the D-value, was determined using a count reduction test in tempered 35% liquid hydrogen peroxide. The statistical analysis of the test results shows a quadratic dependence of the resistance on the pH, with the highest D­values at neutral pH. The sporulation temperature has a linear influence on the resistance. The higher the temperature, the higher the D­value. However, these factors interact with each other, which means that the temperature only influences the resistance when the pH is within a certain range. The oxygen partial pressure during sporulation has no significant influence. Based on the data obtained, a model could be developed enabling the resistance of BIs to be calculated, predicted and standardized depending on the sporulation conditions. BI manufacturers could thus produce BIs with defined resistances for the validation of sterilization effects in aseptic packaging/filling lines for the reliable manufacture of shelf-stable and safe food products.


Assuntos
Bacillus/efeitos dos fármacos , Bacillus/fisiologia , Peróxido de Hidrogênio/farmacologia , Oxidantes/farmacologia , Oxigênio/metabolismo , Esporos Bacterianos/crescimento & desenvolvimento , Esterilização/métodos , Concentração de Íons de Hidrogênio , Esporos Bacterianos/efeitos dos fármacos , Temperatura
8.
Molecules ; 25(19)2020 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-32992964

RESUMO

This study aims at investigating the effect of ethanol (EtOH) on the textural properties of whey protein and egg white protein hydrogels. The hydrogels were produced by thermally induced gel formation of aqueous protein solutions. The water contained in the gel network was subsequently exchanged by EtOH to assess structural changes upon exposure of hydrogels to ethanolic aqueous phases. The textural properties of the hydrogel and alcogel samples were analyzed by uniaxial compression tests. For both protein sources, the hardness increased exponentially when pH and EtOH concentration were increased. This increase correlated with a shrinkage of the gel samples. The gel texture was found to be elastic at low EtOH concentrations and became stiff and hard at higher EtOH concentrations. It was found that the solvent exchange influences the ion concentration within the gels and, therefore, the interactions between molecules in the gel structure. Non-covalent bonds were identified as substantially responsible for the gel structure.


Assuntos
Proteínas do Ovo/química , Etanol/química , Hidrogéis/química , Água/química , Proteínas do Soro do Leite/química , Solventes/química
9.
Magn Reson Med ; 81(6): 3427-3439, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30652361

RESUMO

PURPOSE: The in vivo probing of restricted diffusion effects in large lipid droplets on a clinical MR scanner remains a major challenge due to the need for high b-values and long diffusion times. This work proposes a methodology to probe mean lipid droplet sizes using diffusion-weighted MRS (DW-MRS) at 3T. METHODS: An analytical expression for restricted diffusion was used. Simulations were performed to evaluate the noise performance and the influence of particle size distribution. To validate the method, oil-in-water emulsions were prepared and examined using DW-MRS, laser deflection and light microscopy. The tibia bone marrow was scanned in volunteers to test the method repeatability and characterize microstructural differences at different locations. RESULTS: The simulations showed accurate and precise droplet size estimation when a sufficient SNR is reached with minor dependence on the size distribution. In phantoms, a good correlation between the measured droplet sizes by DW-MRS and by laser deflection (R2 = 0.98; P = 0.01) and microscopy (R2 = 0.99; P < 0.01) measurements was obtained. A mean coefficient of variation of 11.5 % was found for the lipid droplet diameter in vivo. The average diameter was smaller at a proximal (50.1 ± 7.3 µm) compared with a distal tibia location (61.1 ± 6.8 µm) (P < 0.01). CONCLUSION: The presented methods were able to probe restricted diffusion effects in lipid droplets using DW-MRS and to estimate lipid droplet size. The methodology was validated using phantoms and the in vivo feasibility in bone marrow was shown based on a good repeatability and findings in agreement with literature.


Assuntos
Imagem de Difusão por Ressonância Magnética/métodos , Gotículas Lipídicas/química , Processamento de Sinais Assistido por Computador , Tecido Adiposo/diagnóstico por imagem , Adulto , Medula Óssea/diagnóstico por imagem , Simulação por Computador , Humanos , Tamanho da Partícula , Imagens de Fantasmas , Tíbia/diagnóstico por imagem
10.
J Dairy Res ; 86(1): 114-119, 2019 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-30729897

RESUMO

The experiments reported in this research paper examine the potential of digestion using acidic enzymes Protease A and Protease M to selectively hydrolyse α-lactalbumin (α-La) whilst leaving ß-lactoglobulin (ß-Lg) relatively intact. Both enzymes were compared with pepsin hydrolysis since its selectivity to different whey proteins is known. Analysis of the hydrolysis environment showed that the pH and temperature play a significant role in determining the best conditions for achievement of hydrolysis, irrespective of which enzyme was used. Whey protein isolate (WPI) was hydrolysed using pepsin, Acid Protease A and Protease M by randomized hydrolysis conditions. Reversed-phase high performance liquid chromatography was used to analyse residual proteins. Regarding enzyme selectivity under various milieu conditions, all three enzymes showed similarities in the reaction progress and their potential for ß-Lg isolation.


Assuntos
Calicreínas/metabolismo , Lactalbumina/metabolismo , Lactoglobulinas/isolamento & purificação , Pepsina A/metabolismo , Peptídeo Hidrolases/metabolismo , Proteínas do Soro do Leite/química , Hidrólise , Cinética , Especificidade por Substrato
11.
Electrophoresis ; 38(22-23): 2947-2956, 2017 11.
Artigo em Inglês | MEDLINE | ID: mdl-28714138

RESUMO

Tryptic hydrolysis of ß-Lactoglobulin (ß-Lg) is attracting more and more attention due to the reduced allergenicity and the functionality of resulting hydrolysates. To produce hydrolysates in an economically viable way, immobilized trypsin reactors (IMTRs), based on polymethacrylate monolith with pore size 2.1 µm (N1) and 6 µm (N2), were developed and used in a flow-through system. IMTRs were characterized in terms of permeability and enzymatic activity during extensive usage. N1 showed twice the activity compared with N2, correlating well with its almost two times higher amount of immobilized trypsin. N2 showed high stability over 18 cycles, as well as over more than 30 weeks during storage. The efficiency of IMTRs on hydrolyzing ß-Lg was compared with free trypsin, and the resulting hydrolysates were analyzed by MALDI-TOF/MS. The final hydrolysis degree by N1 reached 9.68% (86.58% cleavage sites) within 4 h, while only around 6% (53.67% cleavage sites) by 1.5 mg of free trypsin. Peptides analysis showed the different preference between immobilized trypsin and free trypsin. Under the experimental conditions used in this study, the potential cleavage site Lys135 -Phe136 was resistant against the immobilized trypsin in N1.


Assuntos
Reatores Biológicos , Enzimas Imobilizadas/metabolismo , Lactoglobulinas/metabolismo , Tripsina/metabolismo , Cromatografia , Estabilidade Enzimática , Enzimas Imobilizadas/química , Hidrólise , Lactoglobulinas/análise , Lactoglobulinas/química , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz , Tripsina/química
12.
Crit Rev Food Sci Nutr ; 57(2): 418-453, 2017 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-25976220

RESUMO

Proteins in solution are subject to myriad forces stemming from interactions with each other as well as with the solvent media. The role of the environmental conditions, namely pH, temperature, ionic strength remains under-estimated yet it impacts protein conformations and consequently its interaction with, and susceptibility to, the enzyme. Enzymes, being proteins are also amenable to the environmental conditions because they are either activated or denatured depending on the choice of the conditions. Furthermore, enzyme specificity is restricted to a narrow regime of optimal conditions while opportunities outside the optimum conditions remain untapped. In addition, the composition of protein substrate (whether mixed or single purified) have been underestimated in previous studies. In addition, protein pre-treatment methods like heat denaturation prior to hydrolysis is a complex phenomenon whose progression is influenced by the environmental conditions including the presence or absence of sugars like lactose, ionic strength, purity of the protein, and the molecular structure of the mixed proteins particularly presence of free thiol groups. In this review, we revisit protein hydrolysis with a focus on the impact of the hydrolysis environment and show that preference of peptide bonds and/or one protein over another during hydrolysis is driven by the environmental conditions. Likewise, heat-denaturing is a process which is dependent on not only the environment but the presence or absence of other proteins.


Assuntos
Aditivos Alimentares/metabolismo , Manipulação de Alimentos , Fragmentos de Peptídeos/metabolismo , Hidrolisados de Proteína/metabolismo , Proteínas do Soro do Leite/metabolismo , Animais , Biocatálise , Soluções Tampão , Quimotripsina/química , Quimotripsina/metabolismo , Enzimas Imobilizadas/química , Enzimas Imobilizadas/metabolismo , Aditivos Alimentares/química , Aditivos Alimentares/isolamento & purificação , Concentração de Íons de Hidrogênio , Concentração Osmolar , Pepsina A/química , Pepsina A/metabolismo , Fragmentos de Peptídeos/química , Fragmentos de Peptídeos/isolamento & purificação , Conformação Proteica , Desnaturação Proteica , Hidrolisados de Proteína/química , Hidrolisados de Proteína/isolamento & purificação , Proteólise , Solubilidade , Temperatura , Termolisina/química , Termolisina/metabolismo , Tripsina/química , Tripsina/metabolismo , Proteínas do Soro do Leite/química , Proteínas do Soro do Leite/isolamento & purificação
13.
J Dairy Sci ; 97(1): 56-71, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24268403

RESUMO

Membrane distillation is an emerging membrane process based on evaporation of a volatile solvent. One of its often stated advantages is the low flux sensitivity toward concentration of the processed fluid, in contrast to reverse osmosis. In the present paper, we looked at 2 high-solids applications of the dairy industry: skim milk and whey. Performance was assessed under various hydrodynamic conditions to investigate the feasibility of fouling mitigation by changing the operating parameters and to compare performance to widespread membrane filtration processes. Whereas filtration processes are hydraulic pressure driven, membrane distillation uses vapor pressure from heat to drive separation and, therefore, operating parameters have a different bearing on the process. Experimental and calculated results identified factors influencing heat and mass transfer under various operating conditions using polytetrafluoroethylene flat-sheet membranes. Linear velocity was found to influence performance during skim milk processing but not during whey processing. Lower feed and higher permeate temperature was found to reduce fouling in the processing of both dairy solutions. Concentration of skim milk and whey by membrane distillation has potential, as it showed high rejection (>99%) of all dairy components and can operate using low electrical energy and pressures (<10 kPa). At higher cross-flow velocities (around 0.141 m/s), fluxes were comparable to those found with reverse osmosis, achieving a sustainable flux of approximately 12 kg/h·m(2) for skim milk of 20% dry matter concentration and approximately 20 kg/h·m(2) after 18 h of operation with whey at 20% dry matter concentration.


Assuntos
Destilação/métodos , Filtração/métodos , Manipulação de Alimentos/métodos , Proteínas do Leite/química , Leite/química , Animais , Carbono/análise , Cromatografia Líquida de Alta Pressão , Lactose/análise , Membranas , Modelos Teóricos , Nitrogênio/análise , Pressão , Espectrofotometria Atômica , Temperatura , Proteínas do Soro do Leite
14.
J Sci Food Agric ; 94(11): 2301-7, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24395460

RESUMO

BACKGROUND: Bilberries (Vaccinium myrtillus L.) have been suggested to have preventive properties against diseases associated with oxidative stress such as colon cancer or inflammatory bowel diseases. Therefore the gastrointestinal tract is regarded as a potential target for prevention. In this study the antioxidative properties of a commercially available anthocyanin-rich bilberry extract (BE) were investigated in comparison with four different BE-loaded microcapsule systems. As markers to describe the antioxidant status in this cellular system, intracellular reactive oxygen species (ROS) levels, oxidative DNA damage and total glutathione (tGSH) levels were monitored. RESULTS: Incubations with the BE-loaded capsule systems showed an increase in cellular glutathione levels and reduction of ROS levels at high BE concentrations (100-500 µg mL(-1) ) and a positive effect on the formation of DNA strand breaks (5-10 µg mL(-1) BE). The biological properties of BE-loaded pectin amide core-shell capsules, whey protein matrix capsules and coated apple pectin matrix capsules were comparable to those of the non-encapsulated BE. CONCLUSION: Overall, the BE and the encapsulated BE types tested have antioxidative activity under the studied assay conditions in terms of the prevention of oxidative DNA damage, the reduction of intracellular ROS and the enhancement of cellular tGSH.


Assuntos
Antocianinas/administração & dosagem , Antioxidantes/administração & dosagem , Frutas/química , Estresse Oxidativo/efeitos dos fármacos , Vaccinium myrtillus/química , Antocianinas/farmacologia , Antioxidantes/farmacologia , Células CACO-2 , Cápsulas/química , Dano ao DNA/efeitos dos fármacos , Glutationa/metabolismo , Humanos , Malus , Proteínas do Leite , Pectinas , Extratos Vegetais , Espécies Reativas de Oxigênio/metabolismo , Proteínas do Soro do Leite
15.
J Dairy Res ; 80(1): 14-20, 2013 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-23317562

RESUMO

The present study examines the resistance of the α-lactalbumin to α-chymotrypsin (EC 3.4.21.1) digestion under various experimental conditions. Whey protein isolate (WPI) was hydrolysed using randomised hydrolysis conditions (5 and 10% of WPI; pH 7.0, 7.8 and 8.5; temperature 25, 37 and 50 °C; enzyme-to-substrate ratio, E/S, of 0.1%, 0.5 and 1%). Reversed-phase high performance liquid chromatography (RP-HPLC) was used to analyse residual proteins. Heat, pH adjustment and two inhibitors (Bowman-Birk inhibitor and trypsin inhibitor from chicken egg white) were used to stop the enzyme reaction. While operating outside of the enzyme optimum it was observed that at pH 8.5 selective hydrolysis of ß-lactoglobulin was improved because of a dimer-to-monomer transition while α-la remained relatively resistant. The best conditions for the recovery of native and pure α-la were at 25 °C, pH 8.5, 1% E/S ratio, 5% WPI (w/v) while the enzyme was inhibited using Bowman-Birk inhibitor with around 81% of original α-la in WPI was recovered with no more ß-lg. Operating conditions for hydrolysis away from the chymotrypsin optimum conditions offers a great potential for selective WPI hydrolysis, and removal, of ß-lg with production of whey protein concentrates containing low or no ß-lg and pure native α-la. This method also offers the possibility for production of ß-lg-depleted milk products for sensitive populations.


Assuntos
Quimotripsina/metabolismo , Lactalbumina/isolamento & purificação , Lactoglobulinas/metabolismo , Proteínas do Leite/química , Animais , Cromatografia Líquida de Alta Pressão , Temperatura Alta , Concentração de Íons de Hidrogênio , Hidrólise , Leite , Inibidores de Proteases/farmacologia , Especificidade por Substrato , Proteínas do Soro do Leite
16.
Foods ; 12(8)2023 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-37107469

RESUMO

Hydrocolloids are widely used in food processing because of their texture-forming abilities, which help to preserve the quality of sensitive compounds, e.g., in dried fruit foams, which have recently emerged in healthier alternative snacks. Our aim was to investigate the protective role of maltodextrin in improving the storage stability of fruit foams. This study evaluated the effect of maltodextrin concentrations on the stability of the following quality parameters: anthocyanins, ascorbic acid, color, texture, and sensory perception of dried foamed raspberry pulp during storage. This study compared three concentrations (5%, 15%, and 30% w/w) of maltodextrin in mixtures, evaluating their effect on the stability of these parameters over a 12-week storage period. The foam samples were stored at 37 °C to accelerate chemical reactions under vacuum packaging conditions which excluded oxygen. The addition of 30% maltodextrin to the raspberry pulp blend resulted in the highest retentions in all compounds tested, i.e., 74% for ascorbic acid and 87% for anthocyanins. Color and texture were similarly preserved. Adding 30% maltodextrin to the mixture did not negatively influence the acceptability of sensory perception. Maltodextrin thus represents an effective protective agent for preserving nutritional and sensory qualities for a longer storage period. Hence, using MD together with potato protein was optimal for enhancing the storage stability of fruit foam, which is important for the food industry.

17.
Biotechnol Prog ; 39(2): e3309, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36308420

RESUMO

Robust cell retention devices are key to successful cell culture perfusion. Currently, tangential flow filtration (TFF) and alternating tangential flow filtration (ATF) are most commonly used for this purpose. TFF, however, suffers from poor fouling mitigation, which leads to high filtration resistance and product retention, and ATF suffers from long residence times and cell accumulation. In this work, we propose a filtration system for alternating tangential flow filtration, which takes full advantage of the fouling mitigation effects of alternating flow and reduces cell accumulation. We have tested this novel setup in direct comparison with the XCell ATF® as well as TFF with a model feed comprising yeast cells and bovine serum albumin as protein at harsh permeate to feed flow conditions. We found that by avoiding the dead-end design of a diaphragm pump, the proposed filtration system exhibited a reduced filtration resistance by approximately 20% to 30% (depending on feed rate and permeate flow rate). A further improvement of the novel setup was reached by optimization of phase durations and flow control, which resulted in a fourfold extension of process duration until hollow fiber flow channel blockage occurred. Thus, the proposed concept appears to be superior to current cell retention devices in perfusion technology.


Assuntos
Reatores Biológicos , Técnicas de Cultura de Células , Técnicas de Cultura de Células/métodos , Biotecnologia , Filtração/métodos , Separação Celular/métodos
18.
Membranes (Basel) ; 13(9)2023 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-37755213

RESUMO

Spacer-induced flow shadows and limited mechanical stability due to module construction and geometry are the main obstacles to improving the filtration performance and cleanability of microfiltration spiral-wound membranes (SWMs), applied to milk protein fractionation in this study. The goal of this study was first to improve filtration performance and cleanability by utilising pulsed flow in a modified pilot-scale filtration plant. The second goal was to enhance membrane stability against module deformation by flow-induced friction in the axial direction ("membrane telescoping"). This was accomplished by stabilising membrane layers, including spacers, at the membrane inlet by glue connections. Pulsed flow characteristics similar to those reported in previous lab-scale studies could be achieved by establishing an on/off bypass around the membrane module, thus enabling a high-frequency flow variation. Pulsed flow significantly increased filtration performance (target protein mass flow into the permeate increased by 26%) and cleaning success (protein removal increased by 28%). Furthermore, adding feed-side glue connections increased the mechanical membrane stability in terms of allowed volume throughput by ≥100% compared to unmodified modules, thus allowing operation with higher axial pressure drops, flow velocities and pulsation amplitudes.

19.
Langmuir ; 28(20): 7780-7, 2012 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-22530646

RESUMO

The surface chemistry of ions, water molecules, and proteins as well as their ability to form stable networks in foams can influence and control macroscopic properties such as taste and texture of dairy products considerably. Despite the significant relevance of protein adsorption at liquid interfaces, a molecular level understanding on the arrangement of proteins at interfaces and their interactions has been elusive. Therefore, we have addressed the adsorption of the model protein bovine serum albumin (BSA) at the air-water interface with vibrational sum-frequency generation (SFG) and ellipsometry. SFG provides specific information on the composition and average orientation of molecules at interfaces, while complementary information on the thickness of the adsorbed layer can be obtained with ellipsometry. Adsorption of charged BSA proteins at the water surface leads to an electrified interface, pH dependent charging, and electric field-induced polar ordering of interfacial H(2)O and BSA. Varying the bulk pH of protein solutions changes the intensities of the protein related vibrational bands substantially, while dramatic changes in vibrational bands of interfacial H(2)O are simultaneously observed. These observations have allowed us to determine the isoelectric point of BSA directly at the electrolyte-air interface for the first time. BSA covered air-water interfaces with a pH near the isoelectric point form an amorphous network of possibly agglomerated BSA proteins. Finally, we provide a direct correlation of the molecular structure of BSA interfaces with foam stability and new information on the link between microscopic properties of BSA at water surfaces and macroscopic properties such as the stability of protein foams.


Assuntos
Ar , Eletricidade , Soroalbumina Bovina/química , Água/química , Adsorção , Animais , Bovinos , Concentração de Íons de Hidrogênio , Análise Espectral
20.
Crit Rev Food Sci Nutr ; 52(4): 291-311, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22332594

RESUMO

The addition of microencapsulated probiotic cells to food products is a relatively new functional food concept. Most of the published scientific research in this field is not older than ten years. However, the technological background reaches back to the 1980s, where lactic acid bacteria were microencapsulated within the concept of the so-called immobilized cell technology (ICT). Target applications of ICT were continuous fermentation processes and improved biomass production. The methods adopted from immobilized cell technology were applied for the microencapsulation of probiotics, often optimized towards specific requirements associated with the protection of probiotic cells in food applications. However, there are still significant hurdles with respect to currently available methods for probiotic cell microencapsulation. This is mainly due to the fact that important characteristics of microcapsules based on ICT appear to be in conflict with the requirements arising from an application of probiotic microcapsules in food products, with particle size and inappropriate matrix characteristics being the most prominent ones. Based on this situation the aim of this review is to give a critical overview of the current approaches regarding the microencapsulation of probiotic cells for food applications and to report on emerging developments.


Assuntos
Cápsulas/química , Microbiologia de Alimentos/métodos , Probióticos/farmacologia , Animais , Células Imobilizadas/microbiologia , Queijo , Fermentação , Manipulação de Alimentos/métodos , Gastroenteropatias/terapia , Trânsito Gastrointestinal , Humanos , Iogurte
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA