Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Eur Biophys J ; 50(5): 687-697, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-33538870

RESUMO

Circular dichroism (CD) spectroscopy is a well-established biophysical technique used to investigate the structure of molecules. The analysis of a protein CD spectrum depends on the quality of the original CD data, which can be affected by the sample purity, background absorption of the additives/solvent/buffer, the choice of the parameters used for data collection, etc. In this paper, the CD spectrum of myoglobin was used as a model to exploit how variations on each data collection parameter could affect the final protein CD spectrum and, the subsequent effect of them on the quantitative analysis of protein secondary structure. Bioinformatics analysis carried out with SESCA package and PDBMD2CD server predicted a theoretical myoglobin CD spectrum, and a Monte Carlo-like model was implemented to estimate the uncertainty in secondary structure predictions performed with CDSSTR, Selcon 3 and ContinLL algorithms. An inappropriate choice of data collection parameters can lead to a misinterpretation of the CD data in terms of the protein structural content.


Assuntos
Dicroísmo Circular , Coleta de Dados , Mioglobina , Estrutura Secundária de Proteína , Reprodutibilidade dos Testes
2.
Eur Biophys J ; 48(7): 621-633, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31324942

RESUMO

Antimicrobial peptides are a large group of natural compounds which present promising properties for the pharmaceutical and food industries, such as broad-spectrum activity, potential for use as natural preservatives, and reduced propensity for development of bacterial resistance. Plantaricin 149 (Pln149), isolated from Lactobacillus plantarum NRIC 149, is an intrinsically disordered peptide with the ability to inhibit bacteria from the Listeria and Staphylococcus genera, and which is capable of promoting inhibition and disruption of yeast cells. In this study, the interactions of Pln149 with model membranes composed of zwitterionic and/or anionic phospholipids were investigated using a range of biophysical techniques, including isothermal titration calorimetry, surface tension measurements, synchrotron radiation circular dichroism spectroscopy, oriented circular dichroism spectroscopy, and optical microscopy, to elucidate these peptides' mode of interactions and provide insight into their functional roles. In anionic model membranes, the binding of Pln149 to lipid bilayers is an endothermic process and induces a helical secondary structure in the peptide. The helices bind parallel to the surfaces of lipid bilayers and can promote vesicle disruption, depending on peptide concentration. Although Pln149 has relatively low affinity for zwitterionic liposomes, it is able to adsorb at their lipid interfaces, disturbing the lipid packing, assuming a similar parallel helix structure with a surface-bound orientation, and promoting an increase in the membrane surface area. Such findings can explain the intriguing inhibitory action of Pln149 in yeast cells whose cell membranes have a significant zwitterionic lipid composition.


Assuntos
Bacteriocinas/química , Bacteriocinas/metabolismo , Membrana Celular/química , Membrana Celular/metabolismo , Adsorção , Bicamadas Lipídicas/química , Bicamadas Lipídicas/metabolismo , Ligação Proteica , Tensão Superficial , Lipossomas Unilamelares/química , Lipossomas Unilamelares/metabolismo
3.
Biochim Biophys Acta Gen Subj ; 1862(4): 855-865, 2018 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-29339081

RESUMO

BACKGROUND: Golgi Reassembly and Stacking Proteins (GRASPs) are widely spread among eukaryotic cells (except plants) and are considered as key components in both the stacking of the Golgi cisternae and its lateral connection. Furthermore, GRASPs were also proved essential in the unconventional secretion pathway of several proteins, even though the mechanism remains obscure. It was previously observed that the GRASP homologue in Cryptococcus neoformans has a molten globule-like behavior in solution. METHODS: We used circular dichroism, synchrotron radiation circular dichroism and steady-state as well as time-resolved fluorescence. RESULTS: We report the disorder-to-order transition propensities for a native molten globule-like protein in the presence of different mimetics of cell conditions. Changes in the dielectric constant (such as those experienced close to the membrane surface) seem to be the major factor in inducing multiple disorder-to-order transitions in GRASP, which shows very distinct behavior when in conditions that mimic the vicinity of the membrane surface as compared to those found when free in solution. Other folding factors such as molecular crowding, counter ions, pH and phosphorylation exhibit lower or no effect on GRASP secondary structure and/or stability. GENERAL SIGNIFICANCE: To the best of our knowledge, this is the first study focusing on understanding the disorder-to-order transitions of a molten globule structure without the need of any mild denaturing condition. A model is also introduced aiming at describing how the cell could manipulate the GRASP sensitivity to changes in the dielectric constant during different cell-cycle periods.


Assuntos
Proteínas Fúngicas/química , Proteínas de Membrana/química , Conformação Proteica , Dobramento de Proteína , Álcoois/química , Álcoois/metabolismo , Dicroísmo Circular , Cryptococcus neoformans/metabolismo , Proteínas Fúngicas/metabolismo , Complexo de Golgi/metabolismo , Concentração de Íons de Hidrogênio , Proteínas de Membrana/metabolismo , Metais/química , Metais/metabolismo , Modelos Moleculares , Desnaturação Proteica , Estrutura Secundária de Proteína , Termodinâmica , Água/química , Água/metabolismo
4.
Extremophiles ; 22(5): 781-793, 2018 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-30014242

RESUMO

The biotechnological and industrial uses of thermostable and organic solvent-tolerant enzymes are extensive and the investigation of such enzymes from microbiota present in oil reservoirs is a promising approach. Searching sequence databases for esterases from such microbiota, we have identified in silico a potentially secreted esterase from Acetomicrobium hydrogeniformans, named AhEst. The recombinant enzyme was produced in E. coli to be used in biochemical and biophysical characterization studies. AhEst presented hydrolytic activity on short-acyl-chain p-nitrophenyl ester substrates. AhEst activity was high and stable in temperatures up to 75 °C. Interestingly, high salt concentration induced a significant increase of catalytic activity. AhEst still retained ~ 50% of its activity in 30% concentration of several organic solvents. Synchrotron radiation circular dichroism and fluorescence spectroscopies confirmed that AhEst displays high structural stability in extreme conditions of temperature, salinity, and organic solvents. The enzyme is a good emulsifier agent and is able to partially reverse the wettability of an oil-wet carbonate substrate, making it of potential interest for use in enhanced oil recovery. All the traits observed in AhEst make it an interesting candidate for many industrial applications, such as those in which a significant hydrolytic activity at high temperatures is required.


Assuntos
Proteínas de Bactérias/metabolismo , Esterases/metabolismo , Ambientes Extremos , Desnaturação Proteica , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Estabilidade Enzimática , Escherichia coli/genética , Escherichia coli/metabolismo , Esterases/química , Esterases/genética , Temperatura Alta , Interações Hidrofóbicas e Hidrofílicas , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Salinidade , Solventes/química , Especificidade por Substrato
5.
Eur Biophys J ; 46(7): 599-606, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28258312

RESUMO

The unordered secondary structural content of an intrinsically disordered protein (IDP) is susceptible to conformational changes induced by many different external factors, such as the presence of organic solvents, removal of water, changes in temperature, binding to partner molecules, and interaction with lipids and/or other ligands. In order to characterize the high-flexibility nature of an IDP, circular dichroism (CD) spectroscopy is a particularly useful method due to its capability of monitoring both subtle and remarkable changes in different environments, relative ease in obtaining measurements, the small amount of sample required, and the capability for sample recovery (sample not damaged) and others. Using synchrotron radiation as the light source for CD spectroscopy represents the state-of-the-art version of this technique with feasibility of accessing the lower wavelength UV region, and therefore presenting a series of advantages over conventional circular dichroism (cCD) to monitor a protein conformational behavior, check protein stability, detect ligand binding, and many others. In this paper, we have performed a comparative study using cCD and SRCD methods for investigating the secondary structure and the conformational behavior of natively unfolded proteins: MEG-14 and soybean trypsin inhibitor. We show that the SRCD technique greatly improves the analysis and accuracy of the studies on the conformations of IDPs.


Assuntos
Dicroísmo Circular/instrumentação , Proteínas Intrinsicamente Desordenadas/química , Síncrotrons , Animais , Proteínas de Helminto/química , Proteínas de Plantas/química , Domínios Proteicos , Schistosoma mansoni , Solubilidade , Água/química
6.
Protein Expr Purif ; 118: 39-48, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26432949

RESUMO

Galectin-4 (Gal4), a tandem-repeat type galectin, is expressed in healthy epithelium of the gastrointestinal tract. Altered levels of Gal4 expression are associated with different types of cancer, suggesting its usage as a diagnostic marker as well as target for drug development. The functional data available for this class of proteins suggest that the wide spectrum of cellular activities reported for Gal4 relies on distinct glycan specificity and structural characteristics of its two carbohydrate recognition domains. In the present work, two independent constructs for recombinant expression of the C-terminal domain of human galectin-4 (hGal4-CRD2) were developed. His6-tagged and untagged recombinant proteins were overexpressed in Escherichia coli, and purified by affinity chromatography followed by gel filtration. Correct folding and activity of hGal4-CRD2 were assessed by circular dichroism and fluorescence spectroscopies, respectively. Diffraction quality crystals were obtained by vapor-diffusion sitting drop setup and the crystal structure of CRD2 was solved by molecular replacement techniques at 1.78 Å resolution. Our work describes the development of important experimental tools that will allow further studies in order to correlate structure and binding properties of hGal4-CRD2 and human galectin-4 functional activities.


Assuntos
Carboidratos/química , Galectina 4/química , Galectina 4/isolamento & purificação , Sítios de Ligação , Biofísica , Cristalografia por Raios X , Escherichia coli/genética , Escherichia coli/metabolismo , Galectina 4/genética , Galectina 4/metabolismo , Expressão Gênica , Humanos , Ligação Proteica , Dobramento de Proteína , Estrutura Terciária de Proteína , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/isolamento & purificação , Proteínas Recombinantes de Fusão/metabolismo
7.
Eur Biophys J ; 42(8): 655-60, 2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-23754625

RESUMO

Dioxygenases are nonheme iron enzymes that biodegrade recalcitrant compounds, such as catechol and derivatives, released into the environment by modern industry. Intradiol dioxygenases have attracted much attention due to the interest in their use for bioremediation, which has demanded efforts towards understanding their action mechanism and also how to control it. The role of unexpected amphipatic molecules, observed in crystal structures of intradiol dioxygenases, during catalysis has been poorly explored. We report results obtained with the intradiol enzyme chlorocatechol 1,2-dioxygenase (1,2-CCD) from Pseudomonas putida subjected to delipidation. The delipidated enzyme is more stable and shows more cooperative thermal denaturation. The kinetics changes from Michaelis-Menten to a cooperative scheme, indicating that conformational changes propagate between monomers in the absence of amphipatic molecules. Furthermore, these molecules inhibit catalysis, yielding lower v(max) values. To the best of our knowledge, this is the first report concerning the effects of amphipatic molecules on 1,2-CCD function.


Assuntos
Dioxigenases/metabolismo , Interações Hidrofóbicas e Hidrofílicas , Pseudomonas putida/enzimologia , Catecóis/metabolismo , Dioxigenases/química , Cinética , Metabolismo dos Lipídeos
8.
J Mol Biol ; 433(9): 166889, 2021 04 30.
Artigo em Inglês | MEDLINE | ID: mdl-33639214

RESUMO

Septins are an example of subtle molecular recognition whereby different paralogues must correctly assemble into functional filaments important for essential cellular events such as cytokinesis. Most possess C-terminal domains capable of forming coiled coils which are believed to be involved in filament formation and bundling. Here, we report an integrated structural approach which aims to unravel their architectural diversity and in so doing provide direct structural information for the coiled-coil regions of five human septins. Unexpectedly, we encounter dimeric structures presenting both parallel and antiparallel arrangements which are in consonance with molecular modelling suggesting that both are energetically accessible. These sequences therefore code for two metastable states of different orientations which employ different but overlapping interfaces. The antiparallel structures present a mixed coiled-coil interface, one side of which is dominated by a continuous chain of core hydrophilic residues. This unusual type of coiled coil could be used to expand the toolkit currently available to the protein engineer for the design of previously unforeseen coiled-coil based assemblies. Within a physiological context, our data provide the first atomic details related to the assumption that the parallel orientation is likely formed between septin monomers from the same filament whilst antiparallelism may participate in the widely described interfilament cross bridges necessary for higher order structures and thereby septin function.


Assuntos
Septinas/química , Cristalografia por Raios X , Humanos , Interações Hidrofóbicas e Hidrofílicas , Modelos Moleculares , Ressonância Magnética Nuclear Biomolecular , Multimerização Proteica , Estabilidade Proteica , Estrutura Secundária de Proteína , Septinas/metabolismo , Soluções , Termodinâmica
9.
Biochim Biophys Acta Biomembr ; 1862(3): 183173, 2020 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-31883997

RESUMO

Micro Exon Gene (MEG) proteins are thought to play major roles in the infection and survival of parasitic Schistosoma mansoni worms in host organisms. Here, the physical chemical properties of two small MEG proteins found in the genome of S. mansoni, named MEG-24 and MEG-27, were examined by a combination of biophysical techniques such as differential scanning calorimetry, tensiometry, circular dichroism, fluorescence, and electron spin resonance spectroscopies. The proteins are surface active and structurally arranged as cationic amphipathic α-helices that can associate with lipid membranes and cause their disruption. Upon adsorption to lipid membranes, MEG-27 strongly affects the fluidity of erythrocyte ghost membranes, whereas MEG-24 forms pores in erythrocytes without modifying the ghost membrane fluidity. Whole-mount in situ hybridization experiments indicates that MEG-27 and MEG-24 transcripts are located in the parasite esophagus and subtegumental cells, respectively, suggesting a relevant role of these proteins in the host-parasite interface. Taken together, these characteristics lead us to propose that these MEG proteins may interact with host cell membranes and potentially modulate the immune process using a similar mechanism as that described for α-helical membrane-active peptides.


Assuntos
Éxons/genética , Membranas/química , Schistosoma mansoni/genética , Sequência de Aminoácidos , Animais , Varredura Diferencial de Calorimetria/métodos , Dicroísmo Circular/métodos , Peptídeos/química , Conformação Proteica em alfa-Hélice , Schistosoma mansoni/metabolismo , Esquistossomose mansoni/genética , Esquistossomose mansoni/metabolismo
10.
Int J Biol Macromol ; 133: 428-435, 2019 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-31002902

RESUMO

Septins are members of a group of GTP-binding proteins highly conserved in eukaryotes, being linked to diverse cell processes, such as cytokinesis and membrane association. On the other hand, the malfunction of septins is linked to several pathological processes including neurodegeneration and oncogenesis. Septins interact with each other forming heterocomplexes that polymerize in filaments. Two types of interface between septins alternate along the filament: the G-interface (involving the GTP binding sites), and the NC-interface. This work focuses on the physiological G-interface of SEPT2, used in the SEPT6G-SEPT2G heterodimer assembly, to verify the impact of this interaction on the thermostability and amyloid formation. We found that the SEPT6G-SEPT2G moves to an irreversible state with the ability to bind thioflavin-T at high temperatures, suggesting its amyloid-like nature. Noteworthy, this takes place at a higher temperature than the one observed to the single septins, showing greater thermal/structural stability. Taken together, our results show that in the absence of the partners, the septin becomes unstable and susceptible to amyloid aggregation/formation even in physiological temperatures, and the G-interface appears to have a critical role in this process.


Assuntos
Amiloide/química , Agregados Proteicos , Septinas/química , Septinas/metabolismo , Estabilidade Enzimática , Domínios Proteicos , Multimerização Proteica , Estrutura Quaternária de Proteína , Especificidade por Substrato , Temperatura
11.
PLoS One ; 13(8): e0202148, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30125294

RESUMO

Thermophilic fungi are a promising source of thermostable enzymes able to hydrolytically or oxidatively degrade plant cell wall components. Among these enzymes are lytic polysaccharide monooxygenases (LPMOs), enzymes capable of enhancing biomass hydrolysis through an oxidative mechanism. Myceliophthora thermophila (synonym Sporotrichum thermophile), an Ascomycete fungus, expresses and secretes over a dozen different LPMOs. In this study, we report the overexpression and biochemical study of a previously uncharacterized LPMO (MtLPMO9J) from M. thermophila M77 in Aspergillus nidulans. MtLPMO9J is a single-domain LPMO and has 63% sequence similarity with the catalytic domain of NcLPMO9C from Neurospora crassa. Biochemical characterization of MtLPMO9J revealed that it performs C4-oxidation and is active against cellulose, soluble cello-oligosaccharides and xyloglucan. Moreover, biophysical studies showed that MtLPMO9J is structurally stable at pH above 5 and at temperatures up to 50°C. Importantly, LC-MS analysis of the peptides after tryptic digestion of the recombinantly produced protein revealed not only the correct processing of the signal peptide and methylation of the N-terminal histidine, but also partial autoxidation of the catalytic center. This shows that redox conditions need to be controlled, not only during LPMO reactions but also during protein production, to protect LPMOs from oxidative damage.


Assuntos
Ascomicetos/enzimologia , Polissacarídeos Fúngicos/metabolismo , Oxigenases de Função Mista/metabolismo , Sequência de Aminoácidos , Ascomicetos/genética , Cromatografia Líquida de Alta Pressão , Clonagem Molecular , Polissacarídeos Fúngicos/química , Oxigenases de Função Mista/química , Oxigenases de Função Mista/classificação , Oxigenases de Função Mista/genética , Filogenia , Análise de Sequência de DNA , Relação Estrutura-Atividade , Especificidade por Substrato , Espectrometria de Massas em Tandem , Termodinâmica
12.
Biophys Rev ; 9(5): 517-527, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28825203

RESUMO

Circular dichroism (CD) spectroscopy is a fast, powerful, well-established, and widely used analytical technique in the biophysical and structural biology community to study protein secondary structure and to track changes in protein conformation in different environments. The use of the intense light of a synchrotron beam as the light source for collecting CD measurements has emerged as an enhanced method, known as synchrotron radiation circular dichroism (SRCD) spectroscopy, that has several advantages over the conventional CD method, including a significant spectral range extension for data collection, deeper access to the lower limit (cut-off) of conventional CD spectroscopy, an improved signal-to-noise ratio to increase accuracy in the measurements, and the possibility to collect measurements in highly absorbing solutions. In this review, we discuss different applications of the SRCD technique by researchers from Latin America. In this context, we specifically look at the use of this method for examining the secondary structure and conformational behavior of proteins belonging to the four main classes of the hierarchical protein domain classification CATH (Class, Architecture, Topology, Homology) database, focusing on the advantages and improvements associated with SRCD spectroscopy in terms of characterizing proteins composed of different structural elements.

13.
Sci Rep ; 6: 29976, 2016 07 20.
Artigo em Inglês | MEDLINE | ID: mdl-27436376

RESUMO

Among all proteins localized in the Golgi apparatus, a two-PDZ (PSD95/DlgA/Zo-1) domain protein plays an important role in the assembly of the cisternae. This Golgi Reassembly and Stacking Protein (GRASP) has puzzled researchers due to its large array of functions and relevance in Golgi functionality. We report here a biochemical and biophysical study of the GRASP55/65 homologue in Cryptococcus neoformans (CnGRASP). Bioinformatic analysis, static fluorescence and circular dichroism spectroscopies, calorimetry, small angle X-ray scattering, solution nuclear magnetic resonance, size exclusion chromatography and proteolysis assays were used to unravel structural features of the full-length CnGRASP. We detected the coexistence of regular secondary structures and large amounts of disordered regions. The overall structure is less compact than a regular globular protein and the high structural flexibility makes its hydrophobic core more accessible to solvent. Our results indicate an unusual behavior of CnGRASP in solution, closely resembling a class of intrinsically disordered proteins called molten globule proteins. To the best of our knowledge, this is the first structural characterization of a full-length GRASP and observation of a molten globule-like behavior in the GRASP family. The possible implications of this and how it could explain the multiple facets of this intriguing class of proteins are discussed.


Assuntos
Proteínas de Transporte/química , Proteínas de Membrana/química , Conformação Proteica , Sequência de Aminoácidos , Proteínas de Transporte/metabolismo , Cristalografia por Raios X , Humanos , Interações Hidrofóbicas e Hidrofílicas , Espectroscopia de Ressonância Magnética , Proteínas de Membrana/metabolismo , Modelos Moleculares , Domínios PDZ , Estrutura Quaternária de Proteína , Estrutura Secundária de Proteína , Desdobramento de Proteína , Soluções , Relação Estrutura-Atividade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA