Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 43
Filtrar
1.
Nature ; 572(7771): 634-638, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31462795

RESUMO

The efficiency with which polymeric semiconductors can be chemically doped-and the charge carrier densities that can thereby be achieved-is determined primarily by the electrochemical redox potential between the π-conjugated polymer and the dopant species1,2. Thus, matching the electron affinity of one with the ionization potential of the other can allow effective doping3,4. Here we describe a different process-which we term 'anion exchange'-that might offer improved doping levels. This process is mediated by an ionic liquid solvent and can be pictured as the effective instantaneous exchange of a conventional small p-type dopant anion with a second anion provided by an ionic liquid. The introduction of optimized ionic salt (the ionic liquid solvent) into a conventional binary donor-acceptor system can overcome the redox potential limitations described by Marcus theory5, and allows an anion-exchange efficiency of nearly 100 per cent. As a result, doping levels of up to almost one charge per monomer unit can be achieved. This demonstration of increased doping levels, increased stability and excellent transport properties shows that anion-exchange doping, which can use an almost infinite selection of ionic salts, could be a powerful tool for the realization of advanced molecular electronics.

2.
Acc Chem Res ; 55(5): 660-672, 2022 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-35157436

RESUMO

ConspectusOrganic semiconductors (OSCs) have attracted much attention because of their potential applications for flexible and printed electronic devices and thus have been extensively investigated in a variety of research fields, such as organic chemistry, solid-state physics, and device physics and engineering. Organic thin-film transistors (OTFTs), a class of OSC-based devices, have been expected to be an alternative of silicon-based metal oxide semiconductor field-effect transistors (MOSFETs), which is the indispensable element for most of the current electronic devices. However, the noncovalently aggregated, van der Waals solid nature of the OSCs, by contrast to covalently bound silicon, conventionally exhibits lower carrier mobilities, limiting the practical applications of OTFTs. In particular, electron-transporting (i.e., n-type) OSCs lag behind their hole-transporting (p-type) counterparts in carrier mobility and ambient stability as OTFTs. This is primarily because of the difficulty in achieving compatibility between the aggregated structure exhibiting excellent carrier mobility and that with enough electron affinity. Recent understandings of carrier transport in OSCs explain that large and two-dimensionally isotropic transfer integrals coupled with small fluctuations are crucial for high carrier mobilities. In addition, from a practical point of view, the compatibility with practical device processes is highly required. Rational molecular design principles, therefore, are still demanded for developing OSCs and OTFTs toward high-end device applications.Herein, we will show our recent progress in the development of n-type OSCs with the key π-electron core (π-core) of benzo[de]isoquinolino[1,8-gh]quinolinetetracarboxylic diimide (BQQDI) on the basis of single-crystal OTFT technologies and the band-transport model enabled by two-dimensional molecular packing arrangements. The critical point is the introduction of electronegative nitrogen atoms into the π-core: the nitrogen atoms in BQQDI not only deepen the molecular orbital energies but also allow hydrogen-bonding-like attractive intermolecular interactions to control the aggregated structures, unlike the conventional role of the nitrogen introduced into OSCs only for the former role. Hence, the BQQDI analogues exhibit air-stable OTFT behavior and two-dimensional brickwork packing structures. Specifically, phenethyl-substituted analogue (PhC2-BQQDI) has been shown as the first principal BQQDI-based material, demonstrating solution-processable thin-film single crystals, fewer anisotropic transfer integrals, and an effective suppression of molecular motions, leading to band-like electron-transport properties and stress-durable n-channel OTFT performances, in conjunction with the support of computational calculations. Insights into more fundamental points of view have been found by side-chain derivatization and OTFT studies on polycrystalline and single-crystal films. We hope that this Account provides readers with new strategies for designing high-performance OSCs by two-dimensional control of the aggregated structures.

3.
Phys Chem Chem Phys ; 25(20): 14496-14501, 2023 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-37190947

RESUMO

The chemical structures and morphologies of organic semiconductors (OSCs) and gate dielectrics have been widely investigated to improve the electrical performances of organic thin-film transistors (OTFTs) because the charge transport therein is a phenomenon at the semiconductor-dielectric interfaces. Here, solid and ionic gel gate dielectrics were adopted on the lower and upper surfaces, respectively, of a single, two molecule-thick single crystals of p-type OSCs to study the charge transport properties at individual interfaces between the morphologically compatible OSC surface and different gate dielectrics. Using the four-probe method, the solid and ionic gel interfaces were found to exhibit hole mobilities of 9.3 and 2.2 cm2 V-1 s-1, respectively, which revealed the crucial impact of the gate dielectric materials on the interfacial charge transport. Interestingly, when gate biases are applied through both dielectrics, i.e., under the solid/ionic gel dual-gate transistor operation, the hole mobility at the solid gate interface is improved up to 14.7 cm2 V-1 s-1, which is 1.5 times greater than that assessed without the ionic gel gate. This improvement can be attributed to the electric double layer formed at the ionic gel/uniform crystal surface, which provides a close-to-ideal charge transport interface through dramatic trap-filling. Therefore, the present dual-gate transistor technique will be promising for investigating the intrinsic charge-transport capabilities of OSCs.

4.
Proc Natl Acad Sci U S A ; 117(1): 80-85, 2020 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-31857386

RESUMO

Thin film transistors (TFTs) are indispensable building blocks in any electronic device and play vital roles in switching, processing, and transmitting electronic information. TFT fabrication processes inherently require the sequential deposition of metal, semiconductor, and dielectric layers and so on, which makes it difficult to achieve reliable production of highly integrated devices. The integration issues are more apparent in organic TFTs (OTFTs), particularly for solution-processed organic semiconductors due to limits on which underlayers are compatible with the printing technologies. We demonstrate a ground-breaking methodology to integrate an active, semiconducting layer of OTFTs. In this method, a solution-processed, semiconducting membrane composed of few-molecular-layer-thick single-crystal organic semiconductors is exfoliated by water as a self-standing ultrathin membrane on the water surface and then transferred directly to any given underlayer. The ultrathin, semiconducting membrane preserves its original single crystallinity, resulting in excellent electronic properties with a high mobility up to 12 [Formula: see text] The ability to achieve transfer of wafer-scale single crystals with almost no deterioration of electrical properties means the present method is scalable. The demonstrations in this study show that the present transfer method can revolutionize printed electronics and constitute a key step forward in TFT fabrication processes.

5.
Angew Chem Int Ed Engl ; 62(4): e202206417, 2023 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-36031586

RESUMO

Synthetically versatile electron-deficient π-electron systems are urgently needed for organic electronics, yet their design and synthesis are challenging due to the low reactivity from large electron affinities. In this work, we report a benzo[de]isoquinolino[1,8-gh]quinoline diamide (BQQDA) π-electron system. The electron-rich condensed amide as opposed to the generally-employed imide provides a suitable electronic feature for chemical versatility to tailor the BQQDA π-electron system for various electronic applications. We demonstrate an effective synthetic method to furnish the target BQQDA parent structure, and highly selective functionalization can be performed on bay positions of the π-skeleton. In addition, thionation of BQQDA can be accomplished under mild conditions. Fine-tuning of fundamental properties and supramolecular packing motifs are achieved via chemical modifications, and the cyanated BQQDA organic semiconductor demonstrates a high air-stable electron-carrier mobility.

6.
J Am Chem Soc ; 144(25): 11159-11167, 2022 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-35701868

RESUMO

The hole-carrier transport of organic semiconductors is widely known to occur via intermolecular orbital overlaps of the highest occupied molecular orbitals (HOMO), though the effect of other occupied molecular orbitals on charge transport is rarely investigated. In this work, we first demonstrate evidence of a mixed-orbital charge transport concept in the high-performance N-shaped decyl-dinaphtho[2,3-d:2',3'-d']benzo[1,2-b:4,5-b']dithiophene (C10-DNBDT-NW), where electronic couplings of the second HOMO (SHOMO) and third HOMO (THOMO) also contribute to the charge transport. We then present the molecular design of an N-shaped bis(naphtho[2',3':4,5]thieno)[2,3-b:2',3'-e]pyrazine (BNTP) π-electron system to induce more pronounced mixed-orbital charge transport by incorporating the pyrazine moiety. An effective synthetic strategy for the pyrazine-fused extended π-electron system is developed. With substituent engineering, the favorable two-dimensional herringbone assembly can be obtained with BNTP, and the decylphenyl-substituted BNTP (C10Ph-BNTP) demonstrates large electronic couplings involving the HOMO, SHOMO, and THOMO in the herringbone assembly. C10Ph-BNTP further shows enhanced mixed-orbital charge transport when the electronic couplings of all three occupied molecular orbitals are taken into consideration, which results in a high hole mobility up to 9.6 cm2 V-1 s-1 in single-crystal thin-film organic field-effect transistors. The present study provides insights into the contribution of HOMO, SHOMO, and THOMO to the mixed-orbital charge transport of organic semiconductors.

7.
Phys Chem Chem Phys ; 24(13): 7978-7982, 2022 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-35311875

RESUMO

Current-voltage characteristics and dielectric properties were studied in bromo-bridged one-dimensional compounds, [Pd(en)2Br](Suc-C5)2·H2O, exhibiting mixed-valence and averaged valence (MV-AV) phase transition. In the AV phase, clear nonlinear current-voltage characteristics were observed. This phenomenon was explained by the thermally induced electron-hole separation assisted by an electric field. This mechanism was supported by the dielectric properties of [Pd(en)2Br](Suc-Cn)2·H2O (n = 5 and 6).

8.
J Am Chem Soc ; 142(35): 14974-14984, 2020 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-32812421

RESUMO

Toward the development of high-performance organic semiconductors (OSCs), carrier mobility is the most important requirement for next-generation OSC-based electronics. The strategy is that OSCs consisting of a highly extended π-electron core exhibit two-dimensional (2D) aggregated structures to offer effective charge transport. However, such OSCs, in general, show poor solubility in common organic solvents, resulting in limited solution processability. This is a critical trade-off between the development of OSCs with simultaneous high carrier mobility and suitable solubility. To address this issue, herein, five-membered ring-fused selenium-bridged V-shaped binaphthalene with decyl substituents (C10-DNS-VW) is developed and synthesized by an efficient method. C10-DNS-VW exhibits significantly high solubility for solution processes. Notably, C10-DNS-VW forms a one-dimensional π-stacked packing motif (1D motif) and a 2D herringbone (HB) packing motif (2D motif), depending on the crystal growth condition. On the other hand, the fabrication of thin films by means of both solution process and vacuum deposition techniques forms only the 2D HB motif. External stress tests such as heating and exposure to solvent vapor indicated that 1D and 2D motifs could be synergistically induced by the total balance of intermolecular interactions. Finally, the single-crystalline films of C10-DNS-VW by solution process exhibit carrier mobility up to 11 cm2 V-1 s-1 with suitable transistor stability under ambient conditions for more than two months, indicating that C10-DNS-VW is one of the most promising candidates for breaking the trade-off in the field of solution-processed technologies.

9.
Chemistry ; 26(6): 1165, 2020 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-31840861

RESUMO

Invited for the cover of this issue are Ryuta Ishikawa and Satoshi Kawata at Fukuoka University and co-workers at Osaka University, Tohoku University, and Kumamoto University, Japan, collaborating within the research project "SOFT CRYSTALS". The image depicts the thermally induced simultaneous switching of magnetism and electrical conductivity in a two-dimensional supramolecular architecture composed of dinuclear FeII spin-crossover complexes and partially charged 7,7',8,8'-tetracyano-p-quinodimethanide radicals. 10.1002/chem.201903934.

10.
Chemistry ; 26(6): 1278-1285, 2020 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-31670412

RESUMO

The reaction of Fe(OAc)2 and Hbpypz with neutral TCNQ results in the formation of [Fe2 (bpypz)2 (TCNQ)2 ](TCNQ)2 (1), in which Hbpypz=3,5-bis(2-pyridyl)pyrazole and TCNQ=7,7',8,8'-tetracyano-p-quinodimethane. Crystal packing of 1 with uncoordinated TCNQ and π-π stacking of bpypz- ligands produces an extended two-dimensional supramolecular coordination assembly. Temperature dependence of the dc magnetic susceptibility and heat capacity measurements indicate that 1 undergoes an abrupt spin crossover (SCO) with thermal spin transition temperatures of 339 and 337 K for the heating and cooling modes, respectively, resulting in a thermal hysteresis of 2 K. Remarkably, the temperature dependence of dc electrical transport exhibits a transition that coincides with thermal SCO, demonstrating the thermally induced magnetic and electrical bistability of 1, strongly correlating magnetism with electrical conductivity. This outstanding feature leads to thermally induced simultaneous switching of magnetism and electrical conductivity and a magnetoresistance effect.

11.
Chemistry ; 25(42): 9885-9891, 2019 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-31095786

RESUMO

Crystal structures of a series of organic-inorganic hybrid gold iodide perovskites, formulated as A2 [AuI I2 ][AuIII I4 ] [A=methylammonium (MA) (1) and formamidinium (FA) (2)], A'2 [I3 ]1-x [AuI I2 ]x [AuIII I4 ] [A'=imidazolium (IMD) (3), guanidinium (GUA) (4), dimethylammonium (DMA) (5), pyridinium (PY) (6), and piperizinium (PIP) (7)], systematically changed depending on the cation size. In addition, triiodide (I3 - ) ions were partly incorporated into the AuI2 - sites of 3-7, whereas they were not incorporated into those of 1 and 2. Such a difference comes from the size of the organic cation. Optical absorption spectra showed characteristic intervalence charge-transfer bands from AuI to AuIII species, and the optical band gap increased as the size of the cation became larger.

12.
Inorg Chem ; 57(7): 3775-3781, 2018 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-29542925

RESUMO

MX chains have been widely studied as a 1D mixed-valence system. Although there have been a large number of studies on the boundary between class II and III materials of the Robin-Day classification, there are few studies of compounds at the boundary between classes I and II. In this study, we synthesized a series of Pt- and Pd- MX-chain compounds with perrhenate counterions, [M(en)2][M(en)2X2](ReO4)4 (X = Br for M = Pd and X = Cl, Br, and I for M = Pt). All compounds were isostructural, and the metal-metal distances within the chain exceed 6 Å, which is the longest among MX-chain compounds thus far reported. For [Pt(en)2][Pt(en)2Cl2](ReO4)4 (PtCl), an intervalence charge transfer (IVCT) transition was observed in the UV region at 335 nm (3.7 eV), which is the shortest wavelength for the MX-chain compounds thus far reported, indicating that PtCl is the closest to the Robin-Day class I limit.

13.
Inorg Chem ; 57(1): 12-15, 2018 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-29227105

RESUMO

Hydrostatic (physical) pressure effects on the electrical resistivity of a bromido-bridged palladium compound, [Pd(en)2Br](Suc-C5)2·H2O, were studied. The charge-density-wave to Mott-Hubbard phase transition temperature (TPT) steadily increased with pressure. By a comparison of the effects of the chemical and physical pressures on TPT, it was estimated that the chemical pressure by unit alkyl chain length, i.e., the number of carbon atoms in the alkyl chains within the counterion, corresponded to ca. 1.3 kbar of the physical pressure.

14.
Am J Physiol Heart Circ Physiol ; 312(3): H501-H514, 2017 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-28039202

RESUMO

Activation of CaMKII induces a myriad of biological processes and plays dominant roles in cardiac hypertrophy. Caveolar microdomain contains many calcium/calmodulin-dependent kinase II (CaMKII) targets, including L-type Ca2+ channel (LTCC) complex, and serves as a signaling platform. The location of CaMKII activation is thought to be critical; however, the roles of CaMKII in caveolae are still elusive due to lack of methodology for the assessment of caveolae-specific activation. Our aim was to develop a novel tool for the specific analysis of CaMKII activation in caveolae and to determine the functional role of caveolar CaMKII in cardiac hypertrophy. To assess the caveolae-specific activation of CaMKII, we generated a fusion protein composed of phospholamban and caveolin-3 (cPLN-Cav3) and GFP fusion protein with caveolin-binding domain fused to CaMKII inhibitory peptide (CBD-GFP-AIP), which inhibits CaMKII activation specifically in caveolae. Caveolae-specific activation of CaMKII was detected using phosphospecific antibody for PLN (Thr17). Furthermore, adenoviral overexpression of LTCC ß2a-subunit (ß2a) in NRCMs showed its constitutive phosphorylation by CaMKII, which induces hypertrophy, and that both phosphorylation and hypertrophy are abolished by CBD-GFP-AIP expression, indicating that ß2a phosphorylation occurs specifically in caveolae. Finally, ß2a phosphorylation was observed after phenylephrine stimulation in ß2a-overexpressing mice, and attenuation of cardiac hypertrophy after chronic phenylephrine stimulation was observed in nonphosphorylated mutant of ß2a-overexpressing mice. We developed novel tools for the evaluation and inhibition of caveolae-specific activation of CaMKII. We demonstrated that phosphorylated ß2a dominantly localizes to caveolae and induces cardiac hypertrophy after α1-adrenergic stimulation in mice.NEW & NOTEWORTHY While signaling in caveolae is thought to be important in cardiac hypertrophy, direct evidence is missing due to lack of tools to assess caveolae-specific signaling. This is the first study to demonstrate caveolae-specific activation of CaMKII signaling in cardiac hypertrophy induced by α1-adrenergic stimulation using an originally developed tool.


Assuntos
Agonistas de Receptores Adrenérgicos alfa 1 , Canais de Cálcio Tipo L/metabolismo , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/metabolismo , Cardiomegalia/metabolismo , Cavéolas/metabolismo , Animais , Animais Recém-Nascidos , Canais de Cálcio Tipo L/genética , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/genética , Cardiomegalia/induzido quimicamente , Cardiomegalia/enzimologia , Cavéolas/enzimologia , Células Cultivadas , Ativação Enzimática/efeitos dos fármacos , Fibrose , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Contração Miocárdica , Miócitos Cardíacos/efeitos dos fármacos , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/patologia , Ratos , Transfecção
15.
Inorg Chem ; 53(21): 11764-9, 2014 Nov 03.
Artigo em Inglês | MEDLINE | ID: mdl-25338666

RESUMO

The optical gap in a series of bromo-bridged platinum chain complexes, [Pt(en)2Br](C(n)-Y)2·H2O (en = ethylenediamine; C(n)-Y = dialkyl sulfosuccinate; n = the number of carbon atoms), was controlled by using chemical pressure. From the single-crystal structure, [Pt(en)2Br](C6-Y)2·H2O is in a mixed-valence state at 200 K. In addition, Pt-Pt distances decreased with an increase in n or with a decrease in the temperature. Continuous decreases in the optical gaps upon cooling were observed for n = 5, 7. The smallest gap of 1.20 eV was observed for n = 7 at 50 K. For n = 12, the complex was still in a mixed-valence state at 5 K, although the Pt-Pt distance was quite short. This is probably because of the energetic mismatch between 5dz(2) orbitals of the Pt ions and 4pz orbitals of the Br ions.

16.
Biochem Biophys Res Commun ; 437(4): 609-14, 2013 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-23867818

RESUMO

Fibrosis is one of the most common pathological alterations in heart failure, and fibroblast migration is an essential process in the development of cardiac fibrosis. Experimental autoimmune myocarditis (EAM) is a model of inflammatory heart disease characterized by inflammatory cell infiltration followed by healing without residual fibrosis. However, the precise mechanisms mediating termination of inflammation and nonfibrotic healing remain to be elucidated. Microarray analysis of hearts from model mice at multiple time points after EAM induction identified several secreted proteins upregulated during nonfibrotic healing, including the anti-inflammatory cathelicidin antimicrobial peptide (CAMP). Treatment with LL-37, a human homolog of CAMP, activated MAP kinases in fibroblasts but not in cardiomyocytes, indicating that fibroblasts were the target of CAMP activity. In addition, LL-37 decreased fibroblast migration in the in vitro scratch assay. P2X7 receptor (P2X7R), a well-known receptor for LL-37, was involved in LL-37 mediated biological effect on cardiac fibroblasts. Stimulation of BzATP, a P2X7R agonist, activated MAPK in fibroblasts, whereas the P2X7R antagonist, BBG, as well as P2X7R deletion abolished both LL-37-mediated MAPK activation and LL-37-induced reduction in fibroblast migration. These results strongly suggest that CAMP upregulation during myocarditis prevents myocardial fibrosis by restricting fibroblast migration via activation of the P2X7R-MAPK signaling pathway.


Assuntos
Peptídeos Catiônicos Antimicrobianos/farmacologia , Fibroblastos/efeitos dos fármacos , Receptores Purinérgicos P2X7/metabolismo , Transdução de Sinais , Animais , Anti-Inflamatórios/farmacologia , Movimento Celular , Células Cultivadas , Relação Dose-Resposta a Droga , Fibrose , Sistema de Sinalização das MAP Quinases , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Fosforilação , Ratos , Catelicidinas
17.
Chem Commun (Camb) ; 59(37): 5531-5534, 2023 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-37014701

RESUMO

Thermoelectric energy harvesters based on p- and n-type organic semiconductors are in high demand, while the air stability of n-type devices has long been a challenge. Here, we demonstrate that supramolecular salt-functionalized n-doped ladder-type conducting polymers exhibit excellent stability in the presence of dry air.

18.
Chem Commun (Camb) ; 59(95): 14118-14121, 2023 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-37947057

RESUMO

The electronic states of iodo-bridged platinum nanowire complexes have been studied using polarized FT-IR spectroscopy. The N-H symmetrical stretching mode was found to be highly sensitive to the electronic states, distinguishing mixed-valence (MV) and averaged-valence (AV) states. The first Pt(III) nanowire complexes have been realized by the chemical pressures of the counter-anions.

19.
Natl Sci Rev ; 10(6): nwad047, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37476568

RESUMO

Organic radicals are widely used as linkers or ligands to synthesize molecular magnetic materials. However, studies regarding the molecular anisotropies of radical-based magnetic materials and their multifunctionalities are rare. Herein, a photoisomerizable diarylethene ligand was used to form {[CoIII(3,5-DTSQ·-)(3,5-DTCat2-)]2(6F-DAE-py2)}·3CH3CN·H2O (o-1·3CH3CN·H2O, 6F-DAE-py2 = 1,2-bis(2-methyl-5-(4-pyridyl)-3-thienyl)perfluorocyclopentene), a valence-tautomeric (VT) coordination polymer. We directly observed dual radicals for a single crystal using high-field/-frequency (∼13.3 T and ∼360 GHz) electron paramagnetic resonance (EPR) spectroscopy along the c-axis, which was further confirmed by angle-dependent Q-band EPR spectroscopy. Moreover, a conductive anomaly close to the VT transition temperature was observed only when probes were attached at the ab plane of the single crystal, indicative of synergy between valence tautomerism and conductivity. Structural anisotropy studies and density functional theory (DFT) calculations revealed that this synergy is due to electron transfer associated with valence tautomerism. This study presents the first example of dual-radical-based molecular anisotropy and charge-transfer-induced conductive anisotropy in a photoswitchable coordination polymer.

20.
Adv Sci (Weinh) ; 10(29): e2207440, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37712117

RESUMO

Large-area single-crystalline thin films of n-type organic semiconductors (OSCs) fabricated via solution-processed techniques are urgently demanded for high-end electronics. However, the lack of molecular designs that concomitantly offer excellent charge-carrier transport, solution-processability, and chemical/thermal robustness for n-type OSCs limits the understanding of fundamental charge-transport properties and impedes the realization of large-area electronics. The benzo[de]isoquinolino[1,8-gh]quinolinetetracarboxylic diimide (BQQDI) π-electron system with phenethyl substituents (PhC2 -BQQDI) demonstrates high electron mobility and robustness but its strong aggregation results in unsatisfactory solubility and solution-processability. In this work, an asymmetric molecular design approach is reported that harnesses the favorable charge transport of PhC2 -BQQDI, while introducing alkyl chains to improve the solubility and solution-processability. An effective synthetic strategy is developed to obtain the target asymmetric BQQDI (PhC2 -BQQDI-Cn ). Interestingly, linear alkyl chains of PhC2 -BQQDI-Cn (n = 5-7) exhibit an unusual molecular mimicry geometry with a gauche conformation and resilience to dynamic disorders. Asymmetric PhC2 -BQQDI-C5 demonstrates excellent electron mobility and centimeter-scale continuous single-crystalline thin films, which are two orders of magnitude larger than that of PhC2 -BQQDI, allowing for the investigation of electron transport anisotropy and applicable electronics.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA