Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
ACS Omega ; 8(49): 47187-47200, 2023 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-38107948

RESUMO

A crucial role in the regulation of DNA replication is played by the highly conserved CDC kinase. The CDC7 kinase could serve as a target for therapeutic intervention in cancer. The primary heterocyclic substance is pyrazole, and its derivatives offer great potential as treatments for cancer cell lines. Here, we synthesized the two pyrazole derivatives: 4-(2-(4-chlorophenyl)hydrazinyl)-5-methyl-2-tosyl-1H-pyrazol-3(2H)-one (PYRA-1) and 4-(2-(2,4-difluorophenyl)hydrazinyl)-5-methyl-2-tosyl-1H-pyrazol-3(2H)-one (PYRA-2). The structural confirmation of both the compounds at the three-dimensional level is characterized using single crystal X-ray diffraction and density functional theory. Furthermore, the in silico chemical biological properties were derived using molecular docking and molecular dynamics (MD) simulations. PYRA-1 and PYRA-2 crystallize in the P-1 (a = 8.184(9), b = 14.251(13), c = 15.601(15), α = 91.57(8), ß = 97.48(9), 92.67(9), V = 1801.1(3) 3, and Z = 2) and P21/n (a = 14.8648(8), b = 8.5998(4), c = 15.5586(8), ß = 116.47(7), V = 1780.4(19) 3, and Z = 4), space groups, respectively. In both PYRA-1 and PYRA-2 compounds, C-H···O intermolecular connections are common to stabilize the crystal structure. In addition, short intermolecular interactions stabilizes with C-H···π and π-π stacking. Crystal packing analysis was quantified using Hirshfeld surface analysis resulting in C···H, O···H, and H···H contacts in PYRA-1 exhibiting more contribution than in PYRA-2. The conformational stabilities of the molecules are same in the gas and liquid phases (water and DMSO). The docking scores measured for PYRA-1 and PYRA-2 with CDC7 kinase complexes are -5.421 and -5.884 kcal/mol, respectively. The MD simulations show that PYRA-2 is a more potential inhibitor than PYRA-1 against CDC7 kinase.

2.
Biol. Res ; 53: 51, 2020. tab, graf
Artigo em Inglês | LILACS | ID: biblio-1142418

RESUMO

BACKGROUND: Hyperoxia at resuscitation increases oxidative stress, and even brief exposure to high oxygen concentrations during stabilization may trigger organ injury with adverse long-term outcomes in premature infants. We studied the long-term effects of short-term perinatal oxygen exposure on cell cycle gene expression and lung growth in adult mice. METHODS: We randomized mice litters at birth to 21,40, or 100%O2 for 30 min and recovered in room air for 4 or 12 weeks. Cell cycle gene expression, protein analysis, and lung morphometry were assessed at 4 and 12 weeks. RESULTS: The principal component analysis demonstrated a high degree of correlation for cell cycle gene expression among the three oxygen groups. Lung elastin was significantly lower in the 100%O2 groups at 4 weeks. On lung morphometry, radial alveolar count, alveolar number, and septal count were similar. However, the mean linear intercept (MLI) and septal length significantly correlated among the oxygen groups. The MLI was markedly higher in the 100%O2 groups at 4 and 12 weeks of age, and the septal length was significantly lower in the 100%O2 groups at 12 weeks. CONCLUSION: Short-term exposure to high oxygen concentrations lead to subtle changes in lung development that may affect alveolarization. The changes are related explicitly to secondary crest formation that may result in alteration in lung elastin. Resuscitation with high oxygen concentrations may have a significant impact on lung development and long-term outcomes such as BPD in premature infants.


Assuntos
Animais , Feminino , Gravidez , Camundongos , Oxigênio/efeitos adversos , Hiperóxia/patologia , Pulmão/patologia , Elastina/metabolismo , Estresse Oxidativo , Pulmão/crescimento & desenvolvimento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA