Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 87
Filtrar
1.
Mol Cancer ; 23(1): 92, 2024 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-38715072

RESUMO

Breast cancer, the most frequent female malignancy, is often curable when detected at an early stage. The treatment of metastatic breast cancer is more challenging and may be unresponsive to conventional therapy. Immunotherapy is crucial for treating metastatic breast cancer, but its resistance is a major limitation. The tumor microenvironment (TME) is vital in modulating the immunotherapy response. Various tumor microenvironmental components, such as cancer-associated fibroblasts (CAFs), tumor-associated macrophages (TAMs), and myeloid-derived suppressor cells (MDSCs), are involved in TME modulation to cause immunotherapy resistance. This review highlights the role of stromal cells in modulating the breast tumor microenvironment, including the involvement of CAF-TAM interaction, alteration of tumor metabolism leading to immunotherapy failure, and other latest strategies, including high throughput genomic screening, single-cell and spatial omics techniques for identifying tumor immune genes regulating immunotherapy response. This review emphasizes the therapeutic approach to overcome breast cancer immune resistance through CAF reprogramming, modulation of TAM polarization, tumor metabolism, and genomic alterations.


Assuntos
Neoplasias da Mama , Resistencia a Medicamentos Antineoplásicos , Imunoterapia , Microambiente Tumoral , Feminino , Humanos , Neoplasias da Mama/imunologia , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/terapia , Neoplasias da Mama/patologia , Neoplasias da Mama/genética , Fibroblastos Associados a Câncer/metabolismo , Fibroblastos Associados a Câncer/imunologia , Fibroblastos Associados a Câncer/patologia , Resistencia a Medicamentos Antineoplásicos/genética , Imunoterapia/métodos , Microambiente Tumoral/imunologia , Macrófagos Associados a Tumor/imunologia , Macrófagos Associados a Tumor/metabolismo , Macrófagos Associados a Tumor/efeitos dos fármacos
2.
Mol Cancer ; 21(1): 85, 2022 03 25.
Artigo em Inglês | MEDLINE | ID: mdl-35337340

RESUMO

BACKGROUND: Clustered regularly interspaced short palindromic repeat (CRISPR)-CRISPR-associated protein (Cas) systems are the latest addition to the plethora of gene-editing tools. These systems have been repurposed from their natural counterparts by means of both guide RNA and Cas nuclease engineering. These RNA-guided systems offer greater programmability and multiplexing capacity than previous generation gene editing tools based on zinc finger nucleases and transcription activator like effector nucleases. CRISPR-Cas systems show great promise for individualization of cancer precision medicine. MAIN BODY: The biology of Cas nucleases and dead Cas based systems relevant for in vivo gene therapy applications has been discussed. The CRISPR knockout, CRISPR activation and CRISPR interference based genetic screens which offer opportunity to assess functions of thousands of genes in massively parallel assays have been also highlighted. Single and combinatorial gene knockout screens lead to identification of drug targets and synthetic lethal genetic interactions across different cancer phenotypes. There are different viral and non-viral (nanoformulation based) modalities that can carry CRISPR-Cas components to different target organs in vivo. CONCLUSION: The latest developments in the field in terms of optimization of performance of the CRISPR-Cas elements should fuel greater application of the latter in the realm of precision medicine. Lastly, how the already available knowledge can help in furtherance of use of CRISPR based tools in personalized medicine has been discussed.


Assuntos
Neoplasias , Medicina de Precisão , Sistemas CRISPR-Cas , Edição de Genes , Humanos , Neoplasias/genética , Neoplasias/terapia , Nucleases dos Efetores Semelhantes a Ativadores de Transcrição/genética
3.
Cancer Cell Int ; 22(1): 122, 2022 Mar 17.
Artigo em Inglês | MEDLINE | ID: mdl-35300689

RESUMO

BACKGROUND: Cancer stem cells (CSCs) play crucial role in tumor progression, drug resistance and relapse in various cancers. CSC niche is comprised of various stromal cell types including Tumor-associated macrophages (TAMs). Extrinsic ques derived from these cells help in maintenance of CSC phenotype. TAMs have versatile roles in tumor progression however their function in enrichment of CSC is poorly explored. METHODS: Mouse macrophages (RAW264.7) cells were activated by interaction with conditioned media (CM) of murine breast cancer cells (4T1) into TAMs and the effect of activated macrophage (TAM) derived factors was examined on enrichment of cancer stem cells (CSCs) and tumor growth using in vitro and in vivo models. RESULTS: In this study, we report that macrophages upon interaction with breast cancer cells activate tumor promoting function and exhibit differential expression of various proteins as shown by secretome analysis using proteomics studies. Based on secretome data, we found that Interleukin-6 (IL-6) is one of the up-regulated genes expressed in activated macrophages. Further, we confirm that TAMs produce high levels of IL-6 and breast cancer cell derived factors induce IL-6 production in activated macrophages via p38-MAPK pathway. Furthermore, we demonstrate that tumor activated macrophages induce enrichment of CSCs and expression of CSC specific transcription factors such as Sox-2, Oct-3/4 and Nanog in breast cancer cells. We further prove that TAM derived IL-6 plays a key role in TAM mediated CSC enrichment through activation of Signal transducer and activator of transcription 3 (STAT-3) signaling. TAM derived IL-6 influences breast cancer cell migration and angiogenesis. Moreover, our in vivo findings indicated that TAM derived IL-6 induces CSC population and resulting tumor growth in breast cancer. CONCLUSION: These finding provide evidence that TAM derived IL-6 plays a major role in CSC enrichment and tumor progression in breast cancer and IL-6 and its regulated signalling network may act as potential therapeutic target for management of breast cancer.

4.
J Biochem Mol Toxicol ; 35(4): e22693, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33393692

RESUMO

N-acyl dopamines (NADAs) are bioactive lipids of the endovanilloid family with known cytotoxicity for the cancer cells; however, the available data on the participation of the endovanilloids in epithelial-mesenchymal transition (EMT) and cancer stemness are controversial. This study unveils the inhibitory role of N-arachidonoyl dopamine (AA-DA), a typical representative of the NADA family, in breast cancer cell migration, EMT, and stemness. AA-DA treatment also led to a decrease in cholesterol biosynthesis gene expressions, and addition of exogenous cholesterol reverted these AA-DA-mediated inhibitory effects. Notably, AA-DA treatment inhibited the key regulatory gene of the cholesterol biosynthesis pathway, sterol regulatory element-binding protein 1 (SREBP1), with concurrent repression of the endoplasmic reticulum kinase 1/2 (ERK1/2) pathway. Furthermore, U0126, an ERK inhibitor, inhibited SREBP1 and decreased cellular cholesterol level, unwinding the molecular mechanism behind AA-DA-mediated anticancer activity. Thus, we, for the first time, revealed that AA-DA counteracts breast cancer EMT via inhibition of ERK signaling and cholesterol content.


Assuntos
Neoplasias da Mama/metabolismo , Colesterol/biossíntese , Dopamina , Transição Epitelial-Mesenquimal/efeitos dos fármacos , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Dopamina/análogos & derivados , Dopamina/farmacologia , Feminino , Células HEK293 , Humanos , Proteínas de Neoplasias/metabolismo
5.
Adv Exp Med Biol ; 1329: 419-441, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34664250

RESUMO

Context-dependent reciprocal crosstalk between cancer and surrounding stromal cells in the tumor microenvironment is imperative for the regulation of various hallmarks of cancer. A myriad of growth factors, chemokines, and their receptors aids in the interaction between cancer cells and tumor microenvironmental components. Osteopontin is a chemokine-like protein, overexpressed in different types of cancers. Osteopontin plays a crucial role in orchestrating dialogue between cancer and stromal cells. Osteopontin, in tumor microenvironment, is produced in tumor as well as stromal cells. Tumor-derived osteopontin regulates proliferation, migration, activation, and differentiation of different types of stromal cells. Osteopontin secreted from tumor cells regulates the generation of cancer-associated fibroblasts from resident fibroblasts and mesenchymal stem cells. Osteopontin also shapes immunosuppressive tumor microenvironment by controlling regulatory T cells and tumor-associated macrophages. Moreover, secretion of osteopontin from tumor stroma has been highly documented. Stromal cell-derived osteopontin induces epithelial-to-mesenchymal transition, angiogenesis, metastasis, and cancer stem cell enrichment. Tumor- or stroma-derived osteopontin mainly functions through binding with cell surface receptors, integrins and CD44, and activates downstream signaling events like PI-3 kinase/Akt and MAPK pathways. Presumably, disrupting the communication between the tumor cells and surrounding microenvironment by targeting osteopontin-regulated signaling using specific antibodies, small-molecule inhibitors, and chemotherapeutic agents is a novel therapeutic strategy for clinical management of cancer.


Assuntos
Neoplasias , Microambiente Tumoral , Humanos , Osteopontina/genética , Transdução de Sinais , Células Estromais
6.
Metabolomics ; 16(2): 21, 2020 01 24.
Artigo em Inglês | MEDLINE | ID: mdl-31980945

RESUMO

INTRODUCTION: The metabolic shift induced by hypoxia in cancer cells has not been explored at volatilomic level so far. The volatile organic metabolites (VOMs) constitute an important part of the metabolome and their investigation could provide us crucial aspects of hypoxia driven metabolic reconfiguration in cancer cells. OBJECTIVE: To identify the altered volatilomic response induced by hypoxia in metastatic/aggressive breast cancer (BC) cells. METHODS: BC cells were cultured under normoxic and hypoxic conditions and VOMs were extracted using HS-SPME approach and profiled by standard GC-MS system. Univariate and multivariate statistical approaches (p < 0.05, Log2 FC ≥ 0.58/≤ - 0.58, PC1 > 0.13/< - 0.13) were applied to select the VOMs differentially altered after hypoxic treatment. Metabolic pathway analysis was also carried out in order to identify altered metabolic pathways induced by the hypoxia in the selected BC cells. RESULTS: Overall, 20 VOMs were found to be significantly altered (p < 0.05, PC1 > 0.13/< - 0.13) upon hypoxic exposure to BC cells. Further, cell line specific volatilomic alterations were extracted by comparative metabolic analysis of aggressive (MDA-MB-231) vs. non-aggressive (MCF-7) cells incubated under hypoxia and normoxia. In this case, 15 and 12 VOMs each were found to be significantly altered in aggressive cells when exposed to hypoxic and normoxic condition respectively. Out of these, 9 VOMs were found to be uniquely associated with hypoxia, 6 were specific to normoxia and 6 were found common to both the conditions. Formic acid was identified as the most prominent molecule with higher abundance levels in aggressive as compared to non-aggressive cells in both conditions. Furthermore, metabolic pathway analyses revealed that fatty acid biosynthesis and nicotinate and nicotinamide metabolism were significantly altered in aggressive as compared to non-aggressive cells in normoxia and hypoxia respectively. CONCLUSIONS: Higher formate overflow was observed in aggressive cells compared to non-aggressive cells incubated under both the conditions, reinforcing its correlation with aggressive and invasive cancer type. Moreover, under hypoxia, aggressive cells preferred to be bioenergetically more efficient whereas, under normoxia, fatty acid biosynthesis was favoured when compared to non-aggressive cells.


Assuntos
Neoplasias da Mama/metabolismo , Hipóxia Celular , Compostos Orgânicos Voláteis/metabolismo , Neoplasias da Mama/patologia , Feminino , Humanos , Células MCF-7 , Metabolômica , Análise Multivariada , Células Tumorais Cultivadas , Compostos Orgânicos Voláteis/análise
7.
EMBO Rep ; 18(11): 2030-2050, 2017 11.
Artigo em Inglês | MEDLINE | ID: mdl-28887320

RESUMO

Cancer-associated p53 missense mutants confer gain of function (GOF) and promote tumorigenesis by regulating crucial signaling pathways. However, the role of GOF mutant p53 in regulating DNA replication, a commonly altered pathway in cancer, is less explored. Here, we show that enhanced Cdc7-dependent replication initiation enables mutant p53 to confer oncogenic phenotypes. We demonstrate that mutant p53 cooperates with the oncogenic transcription factor Myb in vivo and transactivates Cdc7 in cancer cells. Moreover, mutant p53 cells exhibit enhanced levels of Dbf4, promoting the activity of Cdc7/Dbf4 complex. Chromatin enrichment of replication initiation factors and subsequent increase in origin firing confirm increased Cdc7-dependent replication initiation in mutant p53 cells. Further, knockdown of CDC7 significantly abrogates mutant p53-driven cancer phenotypes in vitro and in vivo Importantly, high CDC7 expression significantly correlates with p53 mutational status and predicts poor clinical outcome in lung adenocarcinoma patients. Collectively, this study highlights a novel functional interaction between mutant p53 and the DNA replication pathway in cancer cells. We propose that increased Cdc7-dependent replication initiation is a hallmark of p53 gain-of-function mutations.


Assuntos
Adenocarcinoma/genética , Proteínas de Ciclo Celular/genética , Replicação do DNA , Regulação Neoplásica da Expressão Gênica , Neoplasias Pulmonares/genética , Mutação , Proteínas Serina-Treonina Quinases/genética , Proteína Supressora de Tumor p53/genética , Adenocarcinoma/metabolismo , Adenocarcinoma/mortalidade , Adenocarcinoma/patologia , Adenocarcinoma de Pulmão , Animais , Proteínas de Ciclo Celular/antagonistas & inibidores , Proteínas de Ciclo Celular/metabolismo , Linhagem Celular Tumoral , DNA de Neoplasias/genética , DNA de Neoplasias/metabolismo , Perfilação da Expressão Gênica , Humanos , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/mortalidade , Neoplasias Pulmonares/patologia , Masculino , Camundongos , Camundongos Endogâmicos NOD , Camundongos SCID , Componente 2 do Complexo de Manutenção de Minicromossomo/genética , Componente 2 do Complexo de Manutenção de Minicromossomo/metabolismo , Estadiamento de Neoplasias , Transplante de Neoplasias , Proteínas Serina-Treonina Quinases/antagonistas & inibidores , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Proto-Oncogênicas c-myb/genética , Proteínas Proto-Oncogênicas c-myb/metabolismo , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo , Análise de Sobrevida , Ativação Transcricional , Proteína Supressora de Tumor p53/metabolismo
8.
Mol Cancer ; 17(1): 34, 2018 02 19.
Artigo em Inglês | MEDLINE | ID: mdl-29455658

RESUMO

Breast cancer is a multifactorial disease and driven by aberrant regulation of cell signaling pathways due to the acquisition of genetic and epigenetic changes. An array of growth factors and their receptors is involved in cancer development and metastasis. Receptor Tyrosine Kinases (RTKs) constitute a class of receptors that play important role in cancer progression. RTKs are cell surface receptors with specialized structural and biological features which respond to environmental cues by initiating appropriate signaling cascades in tumor cells. RTKs are known to regulate various downstream signaling pathways such as MAPK, PI3K/Akt and JAK/STAT. These pathways have a pivotal role in the regulation of cancer stemness, angiogenesis and metastasis. These pathways are also imperative for a reciprocal interaction of tumor and stromal cells. Multi-faceted role of RTKs renders them amenable to therapy in breast cancer. However, structural mutations, gene amplification and alternate pathway activation pose challenges to anti-RTK therapy.


Assuntos
Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/metabolismo , Receptores Proteína Tirosina Quinases/metabolismo , Antineoplásicos/uso terapêutico , Neoplasias da Mama/genética , Feminino , Regulação Neoplásica da Expressão Gênica , Humanos , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/genética
9.
BMC Cancer ; 18(1): 52, 2018 01 08.
Artigo em Inglês | MEDLINE | ID: mdl-29310608

RESUMO

BACKGROUND: Breast cancer is one of the most commonly diagnosed invasive cancers among women around the world. Among several subtypes, triple negative breast cancer (TNBC) is highly aggressive and chemoresistant. Treatment of TNBC patients has been challenging due to heterogeneity and devoid of well-defined molecular targets. Thus, identification of novel effective and selective agents against TNBC is essential. METHODS: We used epoxyazadiradione to assess the cell viability, mitochondrial potential, ROS level, cell migration, apoptosis and protein expression in cell culture models of TNBC MDA-MB-231 and ER+ MCF-7 breast cancer cells. The molecular mechanism was examined in two different type of breast cancer cells in response to epoxyazadiradione. We have also analyzed the effect of epoxyazadiradione on breast tumor growth using in vivo mice model. RESULTS: In this study, we for the first time investigated that out of 10 major limonoids isolated from Azadirachta indica, epoxyazadiradione exhibits most potent anti-cancer activity in both TNBC and ER+ breast cancer cells. Epoxyazadiradione induces apoptosis and inhibits PI3K/Akt-mediated mitochondrial potential, cell viability, migration and angiogenesis. It also inhibits the expression of pro-angiogenic and pro-metastatic genes such as Cox2, OPN, VEGF and MMP-9 in these cells. Furthermore, epoxyazadiradione attenuates PI3K/Akt-mediated AP-1 activation. Our in vivo data revealed that epoxyazadiradione suppresses breast tumor growth and angiogenesis in orthotopic NOD/SCID mice model. CONCLUSION: Our findings demonstrate that epoxyazadiradione inhibits PI3K/Akt-dependent mitochondrial depolarisation, induces apoptosis and attenuates cell migration, angiogenesis and breast tumor growth suggesting that this compound may act as a potent therapeutic agent for the management of breast cancer.


Assuntos
Neoplasias da Mama/tratamento farmacológico , Proliferação de Células/genética , Limoninas/administração & dosagem , Mitocôndrias/genética , Animais , Apoptose/efeitos dos fármacos , Neoplasias da Mama/genética , Neoplasias da Mama/patologia , Movimento Celular/genética , Ciclo-Oxigenase 2/genética , Feminino , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Limoninas/química , Células MCF-7 , Metaloproteinase 9 da Matriz/genética , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Camundongos , Mitocôndrias/efeitos dos fármacos , Fosfatidilinositol 3-Quinases/genética , Proteínas Proto-Oncogênicas c-akt/genética , Fator A de Crescimento do Endotélio Vascular/genética , Ensaios Antitumorais Modelo de Xenoenxerto
10.
Mol Cancer ; 16(1): 7, 2017 01 30.
Artigo em Inglês | MEDLINE | ID: mdl-28137308

RESUMO

Melanoma is a form of cancer that initiates in melanocytes. Melanoma has multiple phenotypically distinct subpopulation of cells, some of them have embryonic like plasticity which are involved in self-renewal, tumor initiation, metastasis and progression and provide reservoir of therapeutically resistant cells. Cancer stem cells (CSCs) can be identified and characterized based on various unique cell surface and intracellular markers. CSCs exhibit different molecular pattern with respect to non-CSCs. They maintain their stemness and chemoresistant features through specific signaling cascades. CSCs are weak in immunogenicity and act as immunosupressor in the host system. Melanoma treatment becomes difficult and survival is greatly reduced when the patient develop metastasis. Standard conventional oncology treatments such as chemotherapy, radiotherapy and surgical resection are only responsible for shrinking the bulk of the tumor mass and tumor tends to relapse. Thus, targeting CSCs and their microenvironment niche addresses the alternative of traditional cancer therapy. Combined use of CSCs targeted and traditional therapies may kill the bulk tumor and CSCs and offer a promising therapeutic strategy for the management of melanoma.


Assuntos
Resistencia a Medicamentos Antineoplásicos , Melanoma/tratamento farmacológico , Células-Tronco Neoplásicas/patologia , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Humanos , Melanoma/metabolismo , Células-Tronco Neoplásicas/efeitos dos fármacos , Células-Tronco Neoplásicas/metabolismo , Transdução de Sinais , Microambiente Tumoral/efeitos dos fármacos
11.
J Biol Chem ; 290(7): 3936-49, 2015 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-25527500

RESUMO

Triple negative breast cancers (TNBC) are among the most aggressive and therapy-resistant breast tumors and currently possess almost no molecular targets for therapeutic options in this horizon. In the present study we discerned the molecular mechanisms of potential interaction between the endoplasmic reticulum (ER) stress response and the MEK/ERK pathway in inducing apoptosis in TNBC cells. Here we observed that induction of ER stress alone was not sufficient to trigger significant apoptosis but simultaneous inhibition of the MEK/ERK pathway enhanced ER stress-induced apoptosis via a caspase-dependent mechanism. Our study also demonstrated nifetepimine, a dihydropyrimidone derivative as a potent anti-cancer agent in TNBC cells. Nifetepimine down-regulated the MEK/ERK pathway in MDAMB-231 and MDAMB-468 cells and resulted in blockage of ER stress-mediated GRP78 up-regulation. Detailed mechanistic studies also revealed that nifetepimine by down-regulating pERK expression also declined the promoter binding activity of TFII-I to the GRP78 promoter and in turn regulated GRP78 transcription. Studies further extended to in vivo Swiss albino and SCID mice models also revalidated the anti-carcinogenic property of nifetepimine. Thus our findings cumulatively suggest that nifetepimine couples two distinct signaling pathways to induce the apoptotic death cascade in TNBC cells and raises the possibility for the use of nifetepimine as a potent anti-cancer agent with strong immune-restoring properties for therapeutic intervention for this group of cancer bearers.


Assuntos
Apoptose/efeitos dos fármacos , Estresse do Retículo Endoplasmático/efeitos dos fármacos , MAP Quinase Quinase Quinases/metabolismo , Proteína Quinase 1 Ativada por Mitógeno/metabolismo , Proteína Quinase 3 Ativada por Mitógeno/metabolismo , Pirimidinonas/farmacologia , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Neoplasias de Mama Triplo Negativas/patologia , Animais , Western Blotting , Ciclo Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Chaperona BiP do Retículo Endoplasmático , Feminino , Proteínas de Choque Térmico/antagonistas & inibidores , Proteínas de Choque Térmico/genética , Proteínas de Choque Térmico/metabolismo , Humanos , Técnicas Imunoenzimáticas , MAP Quinase Quinase Quinases/genética , Masculino , Camundongos , Camundongos Nus , Camundongos SCID , Proteína Quinase 1 Ativada por Mitógeno/genética , Proteína Quinase 3 Ativada por Mitógeno/genética , RNA Mensageiro/genética , RNA Interferente Pequeno/genética , Reação em Cadeia da Polimerase em Tempo Real , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Neoplasias de Mama Triplo Negativas/metabolismo , Células Tumorais Cultivadas , Ensaios Antitumorais Modelo de Xenoenxerto
13.
J Nanosci Nanotechnol ; 15(12): 9464-72, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26682367

RESUMO

Iron oxide nanoparticles (IONPs) have gained immense importance recently as drug nanocarriers due to easy multifunctionalization, simultaneous targeting, imaging and cancer hyperthermia. Herein, we report a novel nanomedicine comprising of IONPs core functionalized with a potent anticancer bioactive principle, diosgenin from medicinal plant Dioscorea bulbifera via citric acid linker molecule. IONPs were synthesized by reverse co-precipitation and characterized using field emission scanning electron microscopy (FESEM), high resolution transmission electron microscopy (HRTEM) and dynamic light scattering (DLS). Diosgenin functionalization was confirmed using fourier transform infrared spectroscopy (FTIR) and biochemical methods. Synthesized IONPs, citrate linked IONPs (IONPs-CA), diosgenin functionalized IONPs (IONPs-D) along with free citric acid and diosgenin were checked for anticancer activity against MCF7 breast cancer cells by MTT assay, wound migration assay, confocal microscopy and protein expression by western blotting. Size of IONPs, IONPs-CA and IONPs-D gradually increased ranging from 12 to 21 nm as confirmed by FESEM and HRTEM. Signature peaks of diosgenin at 2914, 1166 and 1444 cm-1 IONPs-D, revealed in FTIR indicated the presence of functionalized diosgenin. IONPs-D exhibited 51.08 ± 0.37% antiproliferative activity against MCF7 cells, which was found to be superior to free citric acid (17.71 ± 0.58%) and diosgenin (33.31 ± 0.37%). Treatment with IONPs-D exhibited reduced wound migration upto 40.83 ± 2.91% compared to bare IONPs (89.03 ± 2.58%) and IONPs-CA (50.35 ± 0.48%). IONPs-D and diosgenin exhibited apoptosis induction, confirmed by Alexa Fluor 488 annexin V/PI double-stained cells indicating extensive cell membrane damage coupled with PI influx leading to nuclear staining in treated cells. IONPs-D mediated selective PARP cleavage strongly rationalized it as superior apoptotic inducers. Based on these findings, IONPs-D can be considered as first diosgenin functionalized novel magnetic nanomedicine with antiproliferative, migration inhibiting and apoptosis inducing properties against breast cancer.


Assuntos
Antineoplásicos Fitogênicos/farmacologia , Neoplasias da Mama/tratamento farmacológico , Diosgenina/farmacologia , Portadores de Fármacos/química , Nanopartículas de Magnetita/química , Humanos , Células MCF-7
14.
ACS Omega ; 9(3): 3807-3826, 2024 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-38284072

RESUMO

A poly(d,l-lactide-co-glycolide) (PLGA) copolymer was synthesized using the ring-opening polymerization of d,l-lactide and glycolide monomers in the presence of zinc proline complex in bulk through the green route and was well characterized using attenuated total reflectance-Fourier transform infrared, 1H and 13C nuclear magnetic resonance, gel permeation chromatography, differential scanning calorimetry, X-ray diffraction, matrix-assisted laser desorption/ionization time-of-flight, etc. Furthermore, PLGA-conjugated biotin (PLGA-B) was synthesized using the synthesized PLGA and was employed to fabricate nanoparticles for irinotecan (Ir) delivery. These nanoparticles (PLGA-NP-Ir and PLGA-B-NP-Ir) were tested for physicochemical and biological characteristics. PLGA-B-NP-Ir exhibited a stronger cellular uptake and anticancer activity as compared to PLGA-NP-Ir in CT-26 cancer cells (log p < 0.05). The accumulation and retention of fluorescence-labeled nanoparticles were observed to be better in CT-26-inoculated solid tumors in Balb/c mice. The PLGA-B-NP-Ir-treated group inhibited tumor growth significantly more (log p < 0.001) than the untreated control, PLGA-NP-Ir, and Ir-treated groups. Furthermore, no body weight loss, hematological, and blood biochemical tests demonstrated the nanocarriers' nontoxic nature. This work presents the use of safe PLGA and the demonstration of a proof-of-concept of biotin surface attached PLGA nanoparticle-mediated active targeted Ir administration to combat colon cancer. To treat colon cancer, PLGA-B-NP-Ir performed better due to specific active tumor targeting and greater cellular uptake due to biotin.

15.
J Org Chem ; 78(20): 10192-202, 2013 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-24079457

RESUMO

Tagging of small bioactive molecules with a fluorophore is a highly sensitive method to trace their cellular activities through real-time visual information. Here we disclose a 7-nitrobenzo-2-oxa-1,3-diazole (NBD)-based, high-yielding, one-pot labeling protocol for hydroxylated molecules using Yamaguchi coupling as the key reaction. This methodology was successfully applied on several sensitive and complex hydroxylated bioactive compounds including 7-deacetylazadiradione, simvastatin, camptothecin, andrographolide, cinchonine, ß-dihydroartemisinin, and azadirachtin A. Further, utility of this protocol was illustrated on the cytotoxic activity of azadiradione derivatives against several cancer cell lines through cell imaging of two qualified fluorescent probes.


Assuntos
Produtos Biológicos/química , Corantes Fluorescentes/química , Limoninas/química , Limoninas/farmacologia , Nitrobenzenos/química , Oxidiazóis/química , Concentração de Íons de Hidrogênio , Espectrometria de Fluorescência/métodos
16.
Nanotheranostics ; 7(3): 270-280, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37064610

RESUMO

A series of novel mixed transition metal-Magnesium tartarate complexes of general formulation [MMg(C4H4O6)2 .xH2O] (where M = Mn, Fe, Co, Ni, Cu and Zn) is prepared with bidentate tartarate ligand. The synthesized complexes (C1 to C6) are characterized by various analytical techniques such as Elemental analysis, Thermo gravimetric analysis, FT-IR Spectroscopy, X-ray Diffraction, Magnetic susceptibility study etc. All complexes exhibit the composition MMgL2 where M = Mn(II), Fe(II), Co(II), Ni(II), Cu(II) and Zn(II) and L = bidentate tartarate ligand. Analytical data reveals all complexes possesses 1:1 (metal: ligand) ratio. FT-IR spectral study shows that bidentate tartarate ligand coordinate with metal ion in a bidentate manner through two oxygen atoms. Thermo gravimetric analysis of all complexes shows that degradation curves of complexes agrees with recommended formulae of the complexes. X-ray diffraction technique suggests that all complexes (C1 to C6) are polycrystalline in nature. All newly synthesized metal tartarate complexes and ligand were screened in vitro for their anticancer activity against human breast cancer (MDA-MB-231) cell line. The bioassays of all these complexes showed C3 (Co) and C5 (Cu) Mg-tartarate complexes contains maximum antiproliferative activity at 200 µg/ml concentration on MDA-MB-231 cells as compared to other complexes. MDA-MB-231 cells treated with C3 (Co) and C5 (Cu) Mg-tartarate complexes also showed inhibition in cell migration.


Assuntos
Neoplasias da Mama , Elementos de Transição , Humanos , Feminino , Espectroscopia de Infravermelho com Transformada de Fourier , Ligantes , Metais/química , Elementos de Transição/química , Elementos de Transição/farmacologia , Neoplasias da Mama/tratamento farmacológico
17.
Cancer Biol Med ; 20(6)2023 06 05.
Artigo em Inglês | MEDLINE | ID: mdl-37282627

RESUMO

Prostate cancer, one of the most frequently occurring cancers in men, is a heterogeneous disease involving multiple cell types within tumors. This tumor heterogeneity at least partly results from genomic instability leading to sub-clonal cellular differentiation. The differentiated cell populations originate from a small subset of cells with tumor-initiating and stem-like properties. These cells, termed prostate cancer stem cells (PCSCs), play crucial roles in disease progression, drug resistance, and relapse. This review discusses the origin, hierarchy, and plasticity of PCSCs; methods for isolation and enrichment of PCSCs; and various cellular and metabolic signaling pathways involved in PCSC induction and maintenance, as well as therapeutic targeting.


Assuntos
Neoplasias da Próstata , Masculino , Humanos , Neoplasias da Próstata/genética , Diferenciação Celular , Transdução de Sinais , Progressão da Doença , Células-Tronco Neoplásicas/patologia
18.
J Ethnopharmacol ; 312: 116472, 2023 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-37062530

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Prosopis juliflora (Sw.), DC is a xerophytic plant species that extensively grow in Asia, Africa, Australia, and Brazil. From ancient time P. juliflora is being utilized in various folk remedies for example in wound healing, fever, inflammation, measles, excrescences, diarrhea and dysentery. Traditionally, gum, paste, and smoke obtained from the leaves and pods are applied for anticancer, antidiabetic, anti-inflammatory, and antimicrobial purposes. AIM OF THE STUDY: Our previous studies have demonstrated the promising potential of Prosopis Juliflora leaves methanol extract (PJLME) against breast cancer, and suggested its possible integration as a complementary medicine for the effective management of breast cancer. However, evidence against how PJLME mechanistically target the cancer proliferative pathways and other targets is poorly understood. The basic aim of the present study was to understand the anti-melanoma potential of PJLME against B16f10 cells with possible mechanisms of action. MATERIALS AND METHODS: MTT assay was used to determine cell viability. Wound and transwell migration assay was performed to check migration potential of cells after PJLME treatment, while clonogenic assay was carried out to understand its colony inhibition actvity. Flow cytometry was used to perform annexin V/PI assay (apoptosis assay), ROS assay, cell cycle analysis. In-vitro angiogenesis assay was performed to check formation of capillary like vascular structure after PJLME treatment. Apoptotic genes, signaling pathways markers, EMT markers and stem cell markers were determined by western blotting. In-vivo BALB/C mice xenograft model study was performed to check the effect of PJLME on in-vivo melanoma tumor growth. RESULTS: The experimental outcome of the present study has clearly demonstrated the inhibition of growth, migration, invasion, colony formation and apoptosis inducing potential of PJLME against mouse melanoma cancer cells. Treatment of B16F10 melanoma cells with PJLME resulted in arrest of cell cycle at G0/G1 phase. Annexin V-FITC/PI assay confirmed the apoptosis inducing potential of PJLME in B16F10 and A375 melanoma cells. Furthermore, Western blot experiments confirmed that the treatment of PJLME downregulates the expression of anti-apoptotic gene like Bcl2 and increase the expression profile of pro-apoptotic genes like Bax, Bad, and Bak in B16F10 melanoma cells. HUVEC (Human umbilical vein endothelial cells) tube formation assay clearly demonstrated the anti-angiogenic potential of PJLME. The study also revealed that PJLME has potential to inhibit the Akt and Erk signaling pathways which are participating in cancer cell proliferation, migration, invasion etc. The outcome of qRT-PCR and immunoblotting analysis clearly unveiled that PJLME treatment leads to downregulation of epithelial-mesenchymal transition (EMT) as well as stem cell markers. Finally, the in-vivo animal xenograft model study also revealed the anti-melanoma potential of PJLME by significantly inhibiting the B16F10 melanoma tumor growth in BALB/c mice model. The LC-ESI-MS/MS analysis of PJLME showed the presence of variety of bioactive molecules associated with anticancer effects. CONCLUSION: The outcome of the present investigation clearly demonstrated the anti-melanoma potential of PJLME against B16f10 melanoma cells. PJLME can be explored as an adjuvant or complementary therapy against melanoma cancer, however further studies are required to understand the clinical efficacy of PJLME. Nevertheless, it can be further explored as a promising resource for identification of novel anticancer candidate drug.


Assuntos
Antineoplásicos , Neoplasias da Mama , Melanoma , Prosopis , Animais , Camundongos , Humanos , Feminino , Transição Epitelial-Mesenquimal , Células Endoteliais/metabolismo , Espectrometria de Massas em Tandem , Linhagem Celular Tumoral , Camundongos Endogâmicos BALB C , Melanoma/tratamento farmacológico , Transdução de Sinais , Antineoplásicos/farmacologia , Proliferação de Células , Apoptose , Neoplasias da Mama/tratamento farmacológico , Células-Tronco/metabolismo , Movimento Celular
19.
Chem Biol Interact ; 381: 110566, 2023 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-37257577

RESUMO

The clinical use of doxorubicin (Dox) is narrowed due to its carbonyl reduction to doxorubicinol (Doxol) implicating resistance and cardiotoxicity. Hence, in the present study we have evaluated the cardioprotective effect of AKR1B1 (or aldose reductase, AR) inhibitor NARI-29 (epalrestat (EPS) analogue) and its effect in the Dox-modulated calcium/CaMKII/MuRF1 axis. Initially, the breast cancer patient survival associated with AKR1B1 expression was calculated using Kaplan Meier-plotter (KM-plotter). Further, breast cancer, cardiomyoblast (H9c2), and macrophage (RAW 264.7) cell lines were used to establish the in vitro combination effect of NARI-29 and Dox. To develop the cardiotoxicity model, mice were given Dox 2.5 mg/kg (i.p.), biweekly. The effect of AKR1B1 inhibition using NARI-29 on molecular and cardiac functional changes was measured using echocardiography, fluorescence-imaging, ELISA, immunoblotting, flowcytometry, High-Performance Liquid Chromatography with Fluorescence Detection (HPLC-FD) and cytokine-bead array methods. The bioinformatics data suggested that a high expression of AKR1B1 is associated with significantly low survival of breast cancer patients undergoing chemotherapy; hence, it could be a target for chemo-sensitization and chemo-prevention. Further, in vitro studies showed that AKR1B1 inhibition with NARI-29 has increased the accumulation and sensitized Dox to breast cancer cell lines. However, treatment with NARI-29 has alleviated the Dox-induced toxicity to cardiomyocytes and decreased the secretion of inflammatory cytokines from RAW 264.7 cells. In vivo studies revealed that the NARI-29 (25 and 50 mg/kg) has prevented the functional, histological, biochemical, and molecular alterations induced by Dox treatment. Moreover, we have shown that NARI-29 has prevented the carbonyl reduction of Dox to Doxol in the mouse heart, which reduced the calcium overload, prevented phosphorylation of CaMKII, and reduced the expression of MuRF1 to protect from cardiac injury and apoptosis. Hence in conclusion, AKR1B1 inhibitor NARI-29 could be used as an adjuvant therapeutic agent with Dox to prevent cardiotoxicity and synergize anti-breast cancer activity.


Assuntos
Aldeído Redutase , Cardiotoxicidade , Rodanina , Animais , Camundongos , Aldeído Redutase/metabolismo , Apoptose , Cálcio/metabolismo , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/metabolismo , Cardiotoxicidade/metabolismo , Doxorrubicina/efeitos adversos , Miócitos Cardíacos/metabolismo , Estresse Oxidativo , Rodanina/análogos & derivados , Rodanina/farmacologia
20.
Oncol Rep ; 49(5)2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36999625

RESUMO

Numerous years of cell line­based studies have enhanced the current understanding of cancer and its treatment. However, limited success has been achieved in treating hormone receptor­positive, HER2­negative metastatic breast cancers that are refractory to treatment. The majority of cancer cell lines are unsuitable for use as pre­clinical models that mimic this critical and often fatal clinical type, since they are derived from treatment­naive or non­metastatic breast cancer cases. The aim of the present study was to develop and characterize patient­derived orthotopic xenografts (PDOXs) from patients with endocrine hormone receptor­positive, HER2­negative metastatic breast cancer who had relapsed on therapy. A patient who progressed on endocrine hormone therapy provided her tumor via a biobank. This tumor was implanted in mice. It was then serially passaged by implanting PDOX tumor fragments into another set of mice to develop further generations of PDOXs. These tissues were characterized using various histological and biochemical techniques. Histological, immunofluorescence and western blot analyses indicated that the PDOX tumors retained a similar morphology, histology and subtype­specific molecular features to that of the patient's tumor. The present study successfully established PDOXs of hormone­resistant breast cancer and characterized them in comparison with those derived from the original breast cancer tissue of the patient. The data highlight the reliability and usefulness of PDOX models for studies of biomarker discovery and preclinical drug screening. The present study was registered with the clinical trial registry of India (CTRI; registration no. CTRI/2017/11/010553; registered on 17/11/2017).


Assuntos
Neoplasias da Mama , Feminino , Humanos , Camundongos , Animais , Xenoenxertos , Reprodutibilidade dos Testes , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/patologia , Hormônios , Ensaios Antitumorais Modelo de Xenoenxerto
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA