Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Sensors (Basel) ; 23(7)2023 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-37050669

RESUMO

The topic of indoor air pollution has yet to receive the same level of attention as ambient pollution. We spend considerable time indoors, and poorer indoor air quality affects most of us, particularly people with respiratory and other health conditions. There is a pressing need for methodological case studies focusing on informing households about the causes and harms of indoor air pollution and supporting changes in behaviour around different indoor activities that cause it. The use of indoor air quality (IAQ) sensor data to support behaviour change is the focus of our research in this paper. We have conducted two studies-first, to evaluate the effectiveness of the IAQ data visualisation as a trigger for the natural reflection capability of human beings to raise awareness. This study was performed without the scaffolding of a formal behaviour change model. In the second study, we showcase how a behaviour psychology model, COM-B (Capability, Opportunity, and Motivation-Behaviour), can be operationalised as a means of digital intervention to support behaviour change. We have developed four digital interventions manifested through a digital platform. We have demonstrated that it is possible to change behaviour concerning indoor activities using the COM-B model. We have also observed a measurable change in indoor air quality. In addition, qualitative analysis has shown that the awareness level among occupants has improved due to our approach of utilising IoT sensor data with COM-B-based digital interventions.


Assuntos
Poluentes Atmosféricos , Poluição do Ar em Ambientes Fechados , Humanos , Poluição do Ar em Ambientes Fechados/prevenção & controle , Poluição do Ar em Ambientes Fechados/análise , Melhoria de Qualidade , Motivação , Poluentes Atmosféricos/análise
2.
Sensors (Basel) ; 22(3)2022 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-35161837

RESUMO

With the emergence of Low-Cost Sensor (LCS) devices, measuring real-time data on a large scale has become a feasible alternative approach to more costly devices. Over the years, sensor technologies have evolved which has provided the opportunity to have diversity in LCS selection for the same task. However, this diversity in sensor types adds complexity to appropriate sensor selection for monitoring tasks. In addition, LCS devices are often associated with low confidence in terms of sensing accuracy because of the complexities in sensing principles and the interpretation of monitored data. From the data analytics point of view, data quality is a major concern as low-quality data more often leads to low confidence in the monitoring systems. Therefore, any applications on building monitoring systems using LCS devices need to focus on two main techniques: sensor selection and calibration to improve data quality. In this paper, data-driven techniques were presented for sensor calibration techniques. To validate our methodology and techniques, an air quality monitoring case study from the Bradford district, UK, as part of two European Union (EU) funded projects was used. For this case study, the candidate sensors were selected based on the literature and market availability. The candidate sensors were narrowed down into the selected sensors after analysing their consistency. To address data quality issues, four different calibration methods were compared to derive the best-suited calibration method for the LCS devices in our use case system. In the calibration, meteorological parameters temperature and humidity were used in addition to the observed readings. Moreover, we uniquely considered Absolute Humidity (AH) and Relative Humidity (RH) as part of the calibration process. To validate the result of experimentation, the Coefficient of Determination (R2), Root Mean Square Error (RMSE), and Mean Absolute Error (MAE) were compared for both AH and RH. The experimental results showed that calibration with AH has better performance as compared with RH. The experimental results showed the selection and calibration techniques that can be used in designing similar LCS based monitoring systems.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , Poluentes Atmosféricos/análise , Poluição do Ar/análise , Calibragem , Monitoramento Ambiental , Material Particulado/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA