Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 48
Filtrar
1.
Am J Hum Genet ; 110(8): 1394-1413, 2023 08 03.
Artigo em Inglês | MEDLINE | ID: mdl-37467750

RESUMO

DExD/H-box RNA helicases (DDX/DHX) are encoded by a large paralogous gene family; in a subset of these human helicase genes, pathogenic variation causes neurodevelopmental disorder (NDD) traits and cancer. DHX9 encodes a BRCA1-interacting nuclear helicase regulating transcription, R-loops, and homologous recombination and exhibits the highest mutational constraint of all DDX/DHX paralogs but remains unassociated with disease traits in OMIM. Using exome sequencing and family-based rare-variant analyses, we identified 20 individuals with de novo, ultra-rare, heterozygous missense or loss-of-function (LoF) DHX9 variant alleles. Phenotypes ranged from NDDs to the distal symmetric polyneuropathy axonal Charcot-Marie-Tooth disease (CMT2). Quantitative Human Phenotype Ontology (HPO) analysis demonstrated genotype-phenotype correlations with LoF variants causing mild NDD phenotypes and nuclear localization signal (NLS) missense variants causing severe NDD. We investigated DHX9 variant-associated cellular phenotypes in human cell lines. Whereas wild-type DHX9 was restricted to the nucleus, NLS missense variants abnormally accumulated in the cytoplasm. Fibroblasts from an individual with an NLS variant also showed abnormal cytoplasmic DHX9 accumulation. CMT2-associated missense variants caused aberrant nucleolar DHX9 accumulation, a phenomenon previously associated with cellular stress. Two NDD-associated variants, p.Gly411Glu and p.Arg761Gln, altered DHX9 ATPase activity. The severe NDD-associated variant p.Arg141Gln did not affect DHX9 localization but instead increased R-loop levels and double-stranded DNA breaks. Dhx9-/- mice exhibited hypoactivity in novel environments, tremor, and sensorineural hearing loss. All together, these results establish DHX9 as a critical regulator of mammalian neurodevelopment and neuronal homeostasis.


Assuntos
Doença de Charcot-Marie-Tooth , Transtornos do Neurodesenvolvimento , Animais , Humanos , Camundongos , Linhagem Celular , Doença de Charcot-Marie-Tooth/genética , RNA Helicases DEAD-box/genética , Diclorodifenil Dicloroetileno , DNA Helicases , Mamíferos , Proteínas de Neoplasias/genética
2.
N Engl J Med ; 389(18): 1685-1692, 2023 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-37913506

RESUMO

Two siblings presented with cardiomyopathy, hypertension, arrhythmia, and fibrosis of the left atrium. Each had a homozygous null variant in CORIN, the gene encoding atrial natriuretic peptide (ANP)-converting enzyme. A plasma sample obtained from one of the siblings had no detectable levels of corin or N-terminal pro-ANP but had elevated levels of B-type natriuretic peptide (BNP) and one of the two protein markers of fibrosis that we tested. These and other findings support the hypothesis that BNP cannot fully compensate for a lack of activation of the ANP pathway and that corin is critical to normal ANP activity, left atrial function, and cardiovascular homeostasis.


Assuntos
Arritmias Cardíacas , Cardiomiopatias , Átrios do Coração , Hipertensão , Humanos , Arritmias Cardíacas/diagnóstico , Arritmias Cardíacas/genética , Arritmias Cardíacas/metabolismo , Arritmias Cardíacas/patologia , Fibrilação Atrial , Fator Natriurético Atrial/sangue , Fator Natriurético Atrial/genética , Fator Natriurético Atrial/metabolismo , Cardiomiopatias/sangue , Cardiomiopatias/diagnóstico , Cardiomiopatias/genética , Cardiomiopatias/metabolismo , Fibrose , Átrios do Coração/diagnóstico por imagem , Átrios do Coração/metabolismo , Átrios do Coração/patologia , Hipertensão/sangue , Hipertensão/genética , Hipertensão/metabolismo , Peptídeo Natriurético Encefálico/sangue , Peptídeo Natriurético Encefálico/genética , Peptídeo Natriurético Encefálico/metabolismo , Serina Endopeptidases/sangue , Serina Endopeptidases/genética , Serina Endopeptidases/metabolismo , Irmãos
3.
Am J Hum Genet ; 109(3): 518-532, 2022 03 03.
Artigo em Inglês | MEDLINE | ID: mdl-35108495

RESUMO

Cell adhesion molecules are membrane-bound proteins predominantly expressed in the central nervous system along principal axonal pathways with key roles in nervous system development, neural cell differentiation and migration, axonal growth and guidance, myelination, and synapse formation. Here, we describe ten affected individuals with bi-allelic variants in the neuronal cell adhesion molecule NRCAM that lead to a neurodevelopmental syndrome of varying severity; the individuals are from eight families. This syndrome is characterized by developmental delay/intellectual disability, hypotonia, peripheral neuropathy, and/or spasticity. Computational analyses of NRCAM variants, many of which cluster in the third fibronectin type III (Fn-III) domain, strongly suggest a deleterious effect on NRCAM structure and function, including possible disruption of its interactions with other proteins. These findings are corroborated by previous in vitro studies of murine Nrcam-deficient cells, revealing abnormal neurite outgrowth, synaptogenesis, and formation of nodes of Ranvier on myelinated axons. Our studies on zebrafish nrcamaΔ mutants lacking the third Fn-III domain revealed that mutant larvae displayed significantly altered swimming behavior compared to wild-type larvae (p < 0.03). Moreover, nrcamaΔ mutants displayed a trend toward increased amounts of α-tubulin fibers in the dorsal telencephalon, demonstrating an alteration in white matter tracts and projections. Taken together, our study provides evidence that NRCAM disruption causes a variable form of a neurodevelopmental disorder and broadens the knowledge on the growing role of the cell adhesion molecule family in the nervous system.


Assuntos
Transtornos do Neurodesenvolvimento , Doenças do Sistema Nervoso Periférico , Animais , Axônios/metabolismo , Adesão Celular/genética , Moléculas de Adesão Celular/genética , Moléculas de Adesão Celular/metabolismo , Moléculas de Adesão Celular Neuronais , Humanos , Camundongos , Hipotonia Muscular/genética , Hipotonia Muscular/metabolismo , Espasticidade Muscular/metabolismo , Transtornos do Neurodesenvolvimento/genética , Transtornos do Neurodesenvolvimento/metabolismo , Peixe-Zebra/genética , Peixe-Zebra/metabolismo
4.
J Med Genet ; 2024 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-38719349

RESUMO

BACKGROUND: We aimed to analyse the efficacy and added value of a targeted Israeli expanded carrier screening panel (IL-ECSP), beyond the first-tier test covered by the Israeli Ministry of Health (IMOH) and the second-tier covered by the Health Maintenance Organisations (HMOs). METHODS: A curated variant-based IL-ECSP, tailored to the uniquely diverse Israeli population, was offered at two tertiary hospitals and a major genetics laboratory. The panel includes 1487 variants in 357 autosomal recessive and X-linked genes. RESULTS: We analysed 10 115 Israeli samples during an 18-month period. Of these, 6036 (59.7%) were tested as couples and 4079 (40.3%) were singles. Carriers were most frequently identified with mutations in the following genes: GJB2/GJB6 (1:22 allele frequency), CFTR (1:28), GBA (1:34), TYR (1:39), PAH (1:50), SMN1 (1:52) and HEXA (1:56). Of 3018 couples tested, 753 (25%) had no findings, in 1464 (48.5%) only one partner was a carrier, and in 733 (24.3%) both were carriers of different diseases. We identified 79 (2.6%) at-risk couples, where both partners are carriers of the same autosomal recessive condition, or the female carries an X-linked disease. Importantly, 48.1% of these would not have been detected by ethnically-based screening tests currently provided by the IMOH and HMOs, for example, variants in GBA, TYR, PAH and GJB2/GJB6. CONCLUSION: This is the largest cohort of targeted ECSP testing, tailored to the diverse Israeli population. The IL-ECSP expands the identification of couples at risk and empowers their reproductive choices. We recommend endorsing an expanded targeted panel to the National Genetic Carrier Screening programme.

5.
Hum Genet ; 143(3): 455-469, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38526744

RESUMO

Neurons form the basic anatomical and functional structure of the nervous system, and defects in neuronal differentiation or formation of neurites are associated with various psychiatric and neurodevelopmental disorders. Dynamic changes in the cytoskeleton are essential for this process, which is, inter alia, controlled by the dedicator of cytokinesis 4 (DOCK4) through the activation of RAC1. Here, we clinically describe 7 individuals (6 males and one female) with variants in DOCK4 and overlapping phenotype of mild to severe global developmental delay. Additional symptoms include coordination or gait abnormalities, microcephaly, nonspecific brain malformations, hypotonia and seizures. Four individuals carry missense variants (three of them detected de novo) and three individuals carry null variants (two of them maternally inherited). Molecular modeling of the heterozygous missense variants suggests that the majority of them affect the globular structure of DOCK4. In vitro functional expression studies in transfected Neuro-2A cells showed that all missense variants impaired neurite outgrowth. Furthermore, Dock4 knockout Neuro-2A cells also exhibited defects in promoting neurite outgrowth. Our results, including clinical, molecular and functional data, suggest that loss-of-function variants in DOCK4 probable cause a variable spectrum of a novel neurodevelopmental disorder with microcephaly.


Assuntos
Proteínas Ativadoras de GTPase , Heterozigoto , Microcefalia , Mutação de Sentido Incorreto , Transtornos do Neurodesenvolvimento , Humanos , Microcefalia/genética , Feminino , Masculino , Pré-Escolar , Proteínas Ativadoras de GTPase/genética , Criança , Transtornos do Neurodesenvolvimento/genética , Mutação com Perda de Função , Animais , Deficiências do Desenvolvimento/genética , Camundongos , Lactente , Fenótipo , Adolescente
6.
Hum Genomics ; 17(1): 30, 2023 03 28.
Artigo em Inglês | MEDLINE | ID: mdl-36978159

RESUMO

BACKGROUND: The American College of Medical Genetics and Genomics (ACMG) recently published new tier-based carrier screening recommendations. While many pan-ethnic genetic disorders are well established, some genes carry pathogenic founder variants (PFVs) that are unique to specific ethnic groups. We aimed to demonstrate a community data-driven approach to creating a pan-ethnic carrier screening panel that meets the ACMG recommendations. METHODS: Exome sequencing data from 3061 Israeli individuals were analyzed. Machine learning determined ancestries. Frequencies of candidate pathogenic/likely pathogenic (P/LP) variants based on ClinVar and Franklin were calculated for each subpopulation based on the Franklin community platform and compared with existing screening panels. Candidate PFVs were manually curated through community members and the literature. RESULTS: The samples were automatically assigned to 13 ancestries. The largest number of samples was classified as Ashkenazi Jewish (n = 1011), followed by Muslim Arabs (n = 613). We detected one tier-2 and seven tier-3 variants that were not included in existing carrier screening panels for Ashkenazi Jewish or Muslim Arab ancestries. Five of these P/LP variants were supported by evidence from the Franklin community. Twenty additional variants were detected that are potentially pathogenic tier-2 or tier-3. CONCLUSIONS: The community data-driven and sharing approaches facilitate generating inclusive and equitable ethnically based carrier screening panels. This approach identified new PFVs missing from currently available panels and highlighted variants that may require reclassification.


Assuntos
Etnicidade , Genômica , Humanos , Etnicidade/genética , Árabes , Testes Genéticos
7.
Am J Med Genet A ; 194(6): e63550, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38297485

RESUMO

Klippel-Feil syndrome (KFS) has a genetically heterogeneous phenotype with six known genes, exhibiting both autosomal dominant and autosomal recessive inheritance patterns. PUF60 is a nucleic acid-binding protein, which is involved in a number of nuclear processes, including pre-mRNA splicing, apoptosis, and transcription regulation. Pathogenic variants in this gene have been described in Verheij syndrome due to either 8q24.3 microdeletion or PUF60 single-nucleotide variants. PUF60-associated conditions usually include intellectual disability, among other findings, some overlapping KFS; however, PUF60 is not classically referred to as a KFS gene. Here, we describe a 6-year-old female patient with clinically diagnosed KFS and normal cognition, who harbors a heterozygous de novo variant in the PUF60 gene (c.1179del, p.Ile394Serfs*7). This is a novel frameshift variant, which is predicted to result in a premature stop codon. Clinically, our patient demonstrates a pattern of malformations that matches reported cases of PUF60 variants; however, unlike most others, she has no clear learning difficulties. In light of these findings, we propose that PUF60 should be considered in the differential diagnosis of KFS and that normal cognition should not exclude its testing.


Assuntos
Síndrome de Klippel-Feil , Fatores de Processamento de RNA , Humanos , Feminino , Criança , Diagnóstico Diferencial , Fatores de Processamento de RNA/genética , Síndrome de Klippel-Feil/genética , Síndrome de Klippel-Feil/diagnóstico , Síndrome de Klippel-Feil/fisiopatologia , Síndrome de Klippel-Feil/patologia , Fenótipo , Cognição , Proteínas Repressoras/genética , Mutação com Perda de Função/genética , Deficiência Intelectual/genética , Deficiência Intelectual/diagnóstico , Deficiência Intelectual/patologia
8.
Hum Genet ; 142(5): 683-690, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-35314883

RESUMO

The complement system regulator CD55 was initially found to carry the Cromer blood group system antigens, and its complete loss of function was subsequently revealed to cause a severe monogenic gastrointestinal syndrome characterized by protein-losing enteropathy and susceptibility to venous thrombosis. Here we present homozygosity to the CD55 c.596C>T; p.Ser199Leu variant, which was previously described as the Cromer Dr(a-) genotype, in two Bukharan Jewish CD55-deficiency patients with variable disease severity. We confirm that this missense variant causes aberrant splicing and deletion of 44 bp in exon 5, leading to premature termination and low expression of the CD55 protein. Furthermore, Patient 1 exhibited a mildly abnormal B cell immunophenotyping profile. By population screening we established that this variant is highly prevalent in the Bukharan Jewish population, with a carrier frequency of 1:17, suggesting that many similar patients are un- or mis-diagnosed. The phenotypic variability, ranging from abdominal pain when eating a high-fat diet to the full CD55-deficiency phenotype, is likely related to modifiers affecting the proportion of the variant that is able to escape aberrant splicing. Establishing the diagnosis of CD55-deficiency in a timely manner, even in patients with milder symptoms, may have a critical effect on their management and quality-of-life since treatment with the complement inhibitor eculizumab is highly effective in ameliorating disease manifestations. Awareness of founder mutations within certain populations can further guide genetic testing and prevent a diagnostic odyssey, by placing this CD55 variant high on the differential diagnosis.


Assuntos
Antígenos de Grupos Sanguíneos , Judeus , Humanos , Antígenos CD55/genética , Antígenos de Grupos Sanguíneos/genética , Fenótipo , Genótipo
9.
Mol Genet Metab ; 140(3): 107702, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37776842

RESUMO

Propionic acidemia (PA) is an autosomal recessive metabolic disorder caused by variants in PCCA or PCCB, both sub-units of the propionyl-CoA carboxylase (PCC) enzyme. PCC is required for the catabolism of certain amino acids and odd-chain fatty acids. In its absence, the accumulated toxic metabolites cause metabolic acidosis, neurologic symptoms, multi-organ dysfunction and possible death. The clinical presentation of PA is highly variable, with typical onset in the neonatal or early infantile period. We encountered two families, whose children were diagnosed with PA. Exome sequencing (ES) failed to identify a pathogenic variant, and we proceeded with genome sequencing (GS), demonstrating homozygosity to a deep intronic PCCB variant. RNA analysis established that this variant creates a pseudoexon with a premature stop codon. The parents are variant carriers, though three of them display pseudo-homozygosity due to a common large benign intronic deletion on the second allele. The parental presumed homozygosity merits special attention, as it masked the causative variant at first, which was resolved only by RNA studies. Arriving at a rapid diagnosis, whether biochemical or genetic, can be crucial in directing lifesaving care, concluding the diagnostic odyssey, and allowing the family prenatal testing in subsequent pregnancies. This study demonstrates the power of integrative genetic studies in reaching a diagnosis, utilizing GS and RNA analysis to overcome ES limitations and define pathogenicity. Importantly, it highlights that intronic deletions should be taken into consideration when analyzing genomic data, so that pseudo-homozygosity would not be misinterpreted as true homozygosity, and pathogenic variants will not be mislabeled as benign.


Assuntos
Acidemia Propiônica , Recém-Nascido , Criança , Humanos , Acidemia Propiônica/genética , RNA , Metilmalonil-CoA Descarboxilase/genética , Mutação , Códon sem Sentido
10.
Prenat Diagn ; 43(10): 1374-1377, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37639281

RESUMO

A Jewish couple of mixed origin was referred for genetic counseling following termination of pregnancy at 18 weeks of gestation due to severe ventriculomegaly with aqueduct stenosis. Trio exome sequencing revealed a loss-of-function heterozygous variant in the SMARCC1 gene inherited from an unaffected mother. The SMARCC1 gene is associated with embryonic neurodevelopmental processes. Recent studies have linked perturbations of the gene with autosomal dominant congenital hydrocephalus, albeit with reduced penetrance. However, these studies were not referenced in the SMARCC1 OMIM record (*601732) and the gene was not considered, at the time, an OMIM morbid gene. Following our case and appeal, SMARCC1 is now considered a susceptibility gene for hydrocephalus. This allowed us to reclassify the variant as likely pathogenic and empowered the couple to make informed reproductive choices.


Assuntos
Hidrocefalia , Fatores de Transcrição , Feminino , Humanos , Gravidez , Aconselhamento Genético , Heterozigoto , Hidrocefalia/genética , Penetrância , Fatores de Transcrição/genética
12.
Prenat Diagn ; 42(12): 1484-1487, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36221156

RESUMO

FETAL PHENOTYPE: A couple of Ashkenazi Jewish descent was referred for an early anatomy scan at 14 + 2 weeks of gestation following a previous pregnancy termination due to posterior encephalocele and enlarged kidneys. The index pregnancy was also positive for several fetal abnormalities, including enlarged kidneys with cystic dysplasia and abnormal cerebellar morphology highly suggestive of Joubert syndrome. GENETIC DIAGNOSTIC TEST PERFORMED, RESULT, AND INTERPRETATION: Trio exome sequencing revealed compound heterozygosity for variants in the TMEM67 gene: a known pathogenic maternally inherited variant found in trans with a paternal intronic variant of unknown significance. RNA analysis revealed that the intronic variant creates a cryptic acceptor splice site in intron 12, leading to the insertion of 22 bp and causing a frameshift with a premature stop codon. This analysis enabled the reclassification of the intronic variant to likely pathogenic. IMPLICATIONS AND NOVELTY: This information empowered the couple to make informed reproductive choices and opt for preimplantation genetic testing (PGT) for future pregnancies.


Assuntos
Disseminação de Informação , Sítios de Splice de RNA , Éxons , Mutação , Íntrons
13.
Am J Med Genet A ; 185(10): 3161-3166, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34145742

RESUMO

Tel Hashomer camptodactyly syndrome is a long-known entity characterized by camptodactyly with muscular hypoplasia, skeletal dysplasia, and abnormal palmar creases. Currently, the genetic basis for this disorder is unknown, thus there is a possibility that this clinical presentation may be contained within another genetic diagnosis. Here, we present a multiplex family with a previous clinical diagnosis of Tel Hashomer camptodactyly syndrome. Whole exome sequencing and pedigree-based analysis revealed a novel hemizygous truncating variant c.269_270dup (p.Phe91Alafs*34) in the FGD1 gene (NM_004463.3) in all three symptomatic patients, congruous with a diagnosis of Aarskog-Scott syndrome. Our report adds to the limited data on Aarskog-Scott syndrome, and emphasizes the importance of unbiased comprehensive molecular testing toward establishing a diagnosis for genetic syndromes with unknown genetic basis.


Assuntos
Nanismo/diagnóstico , Face/anormalidades , Doenças Genéticas Ligadas ao Cromossomo X/diagnóstico , Predisposição Genética para Doença , Genitália Masculina/anormalidades , Fatores de Troca do Nucleotídeo Guanina/genética , Deformidades Congênitas da Mão/diagnóstico , Cardiopatias Congênitas/diagnóstico , Comunicação Interatrial/diagnóstico , Hirsutismo/diagnóstico , Doenças Musculares/diagnóstico , Diagnóstico Diferencial , Nanismo/genética , Nanismo/patologia , Face/patologia , Feminino , Doenças Genéticas Ligadas ao Cromossomo X/genética , Doenças Genéticas Ligadas ao Cromossomo X/patologia , Genitália Masculina/patologia , Deformidades Congênitas da Mão/genética , Deformidades Congênitas da Mão/patologia , Cardiopatias Congênitas/genética , Cardiopatias Congênitas/patologia , Comunicação Interatrial/genética , Hirsutismo/genética , Humanos , Deformidades Congênitas dos Membros , Masculino , Doenças Musculares/genética , Linhagem , Sequenciamento do Exoma
14.
J Med Genet ; 57(7): 500-504, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-30858171

RESUMO

BACKGROUND: Chromosomal instability, as reflected by structural or copy-number changes, is a known cancer characteristic but are rarely observed in healthy tissue. Mutations in DNA repair genes disrupt the maintenance of DNA integrity and predispose to hereditary cancer syndromes. OBJECTIVE: To clinically characterise and genetically diagnose two reportedly unrelated patients with unique cancer syndromes, including multiorgan tumourogenesis (patient 1) and early-onset acute myeloid leukaemia (patient 2), both displaying unique peripheral blood karyotypes. METHODS: Genetic analysis in patient 1 included TruSight One panel and whole-exome sequencing, while patient 2 was diagnosed by FoundationOne Heme genomic analysis; Sanger sequencing was used for mutation confirmation in both patients. Karyotype analysis was performed on peripheral blood, bone marrow and other available tissues. RESULTS: Both patients were found homozygous for CHEK2 c.499G>A; p.Gly167Arg and exhibited multiple different chromosomal translocations in 30%-60% peripheral blood lymphocytes. This karyotype phenotype was not observed in other tested tissues or in an ovarian cancer patient with a different homozygous missense mutation in CHEK2 (c.1283C>T; p.Ser428Phe). CONCLUSIONS: The multiple chromosomal translocations in patient lymphocytes highlight the role of CHK2 in DNA repair. We suggest that homozygosity for p.Gly167Arg increases patients' susceptibility to non-accurate correction of DNA breaks and possibly explains their increased susceptibility to either multiple primary tumours during their lifetime or early-onset tumourigenesis.


Assuntos
Quinase do Ponto de Checagem 2/genética , Predisposição Genética para Doença , Neoplasias/genética , Translocação Genética/genética , Adulto , Idoso , Quinase do Ponto de Checagem 2/ultraestrutura , Feminino , Homozigoto , Humanos , Cariótipo , Masculino , Pessoa de Meia-Idade , Neoplasias/patologia , Linhagem , Conformação Proteica
15.
Genet Med ; 22(2): 389-397, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31388190

RESUMO

PURPOSE: Sifrim-Hitz-Weiss syndrome (SIHIWES) is a recently described multisystemic neurodevelopmental disorder caused by de novo variants inCHD4. In this study, we investigated the clinical spectrum of the disorder, genotype-phenotype correlations, and the effect of different missense variants on CHD4 function. METHODS: We collected clinical and molecular data from 32 individuals with mostly de novo variants in CHD4, identified through next-generation sequencing. We performed adenosine triphosphate (ATP) hydrolysis and nucleosome remodeling assays on variants from five different CHD4 domains. RESULTS: The majority of participants had global developmental delay, mild to moderate intellectual disability, brain anomalies, congenital heart defects, and dysmorphic features. Macrocephaly was a frequent but not universal finding. Additional common abnormalities included hypogonadism in males, skeletal and limb anomalies, hearing impairment, and ophthalmic abnormalities. The majority of variants were nontruncating and affected the SNF2-like region of the protein. We did not identify genotype-phenotype correlations based on the type or location of variants. Alterations in ATP hydrolysis and chromatin remodeling activities were observed in variants from different domains. CONCLUSION: The CHD4-related syndrome is a multisystemic neurodevelopmental disorder. Missense substitutions in different protein domains alter CHD4 function in a variant-specific manner, but result in a similar phenotype in humans.


Assuntos
Complexo Mi-2 de Remodelação de Nucleossomo e Desacetilase/genética , Transtornos do Neurodesenvolvimento/genética , Anormalidades Múltiplas/genética , Adolescente , Adulto , Criança , Pré-Escolar , Montagem e Desmontagem da Cromatina/genética , Deficiências do Desenvolvimento/genética , Feminino , Estudos de Associação Genética , Genótipo , Perda Auditiva/genética , Cardiopatias Congênitas/genética , Humanos , Lactente , Recém-Nascido , Deficiência Intelectual/genética , Masculino , Megalencefalia/genética , Complexo Mi-2 de Remodelação de Nucleossomo e Desacetilase/metabolismo , Anormalidades Musculoesqueléticas/genética , Mutação de Sentido Incorreto/genética , Fenótipo , Síndrome , Fatores de Transcrição/genética
17.
Am J Med Genet A ; 182(1): 205-212, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31697046

RESUMO

Agenesis of the corpus callosum (ACC) is a common prenatally-detected brain anomaly. Recently, an association between mutations in the DCC Netrin 1 receptor (DCC) gene and ACC, with or without mirror movements, has been demonstrated. In this manuscript, we present a family with a novel heterozygous frameshift mutation in DCC, review the available literature, and discuss the challenges involved in the genetic counseling for recently discovered disorders with paucity of medical information. We performed whole exome sequencing in a healthy nonconsanguineous couple that underwent two pregnancy terminations due to prenatal diagnosis of ACC. A heterozygous variant c.2774dupA (p.Asn925Lysfs*17) in the DCC gene was demonstrated in fetal and paternal DNA samples, as well as in a healthy 4-year-old offspring. When directly questioned, both father and child reported having mirror movements not affecting quality of life. Segregation analysis demonstrated the variant in three paternal siblings, two of them having mirror movements. Brain imaging revealed normal corpus callosum. Summary of literature data describing heterozygous loss-of-function variants in DCC (n = 61) revealed 63.9% penetrance for mirror movements, 9.8% for ACC, and 5% for both. No significant neurodevelopmental abnormalities were reported among the seven published patients with DCC loss-of-function variants and ACC. Prenatal diagnosis of ACC should prompt a specific anamnesis regarding any neurological disorder, as well as intentional physical examination of both parents aimed to detect mirror movements. In suspicious cases, detection of DCC pathogenic variants might markedly improve the predicted prognosis, alleviate the parental anxiety, and possibly prevent pregnancy termination.


Assuntos
Agenesia do Corpo Caloso/genética , Receptor DCC/genética , Transtornos dos Movimentos/genética , Malformações do Sistema Nervoso/genética , Agenesia do Corpo Caloso/diagnóstico por imagem , Agenesia do Corpo Caloso/fisiopatologia , Encéfalo/diagnóstico por imagem , Encéfalo/fisiopatologia , Criança , Pré-Escolar , Corpo Caloso/diagnóstico por imagem , Corpo Caloso/fisiopatologia , Feminino , Aconselhamento Genético , Heterozigoto , Humanos , Masculino , Transtornos dos Movimentos/diagnóstico por imagem , Transtornos dos Movimentos/fisiopatologia , Malformações do Sistema Nervoso/diagnóstico por imagem , Malformações do Sistema Nervoso/fisiopatologia , Penetrância , Gravidez , Diagnóstico Pré-Natal
18.
Am J Hum Genet ; 99(5): 1172-1180, 2016 Nov 03.
Artigo em Inglês | MEDLINE | ID: mdl-27773429

RESUMO

Glycine is a major neurotransmitter that activates inhibitory glycine receptors and is a co-agonist for excitatory glutamatergic N-methyl-D-aspartate (NMDA) receptors. Two transporters, GLYT1 and GLYT2, regulate extracellular glycine concentrations within the CNS. Dysregulation of the extracellular glycine has been associated with hyperekplexia and nonketotic hyperglycinemia. Here, we report four individuals from two families who presented at birth with facial dysmorphism, encephalopathy, arthrogryposis, hypotonia progressing to hypertonicity with startle-like clonus, and respiratory failure. Only one individual survived the respiratory failure and was weaned off ventilation but has significant global developmental delay. Mildly elevated cerebrospinal fluid (CSF) glycine and normal serum glycine were observed in two individuals. In both families, we identified truncating mutations in SLC6A9, encoding GLYT1. We demonstrate that pharmacologic or genetic abolishment of GlyT1 activity in mice leads to mildly elevated glycine in the CSF but not in blood. Additionally, previously reported slc6a9-null mice and zebrafish mutants also display phenotypes consistent with the affected individuals we examined. Our data suggest that truncating SLC6A9 mutations lead to a distinct human neurological syndrome hallmarked by mildly elevated CSF glycine and normal serum glycine.


Assuntos
Artrogripose/genética , Proteínas da Membrana Plasmática de Transporte de Glicina/genética , Glicina/líquido cefalorraquidiano , Hiperglicinemia não Cetótica/genética , Animais , Artrogripose/diagnóstico , Pré-Escolar , Feminino , Deleção de Genes , Regulação da Expressão Gênica , Glicina/sangue , Proteínas da Membrana Plasmática de Transporte de Glicina/metabolismo , Humanos , Hiperglicinemia não Cetótica/diagnóstico , Lactente , Recém-Nascido , Masculino , Camundongos , Camundongos Knockout , Linhagem
19.
J Clin Immunol ; 39(4): 430-439, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-31079270

RESUMO

PURPOSE: This study aimed to characterize the clinical phenotype, genetic basis, and consequent immunological phenotype of a boy with severe infantile-onset colitis and eosinophilic gastrointestinal disease, and no evidence of recurrent or severe infections. METHODS: Trio whole-exome sequencing (WES) was utilized for pathogenic variant discovery. Western blot (WB) and immunohistochemical (IHC) staining were used for protein expression analyses. Immunological workup included in vitro T cell studies, flow cytometry, and CyTOF analysis. RESULTS: WES revealed a homozygous variant in the capping protein regulator and myosin 1 linker 2 (CARMIL2) gene: c.1590C>A; p.Asn530Lys which co-segregated with the disease in the nuclear family. WB and IHC analyses demonstrated reduced protein levels in patient's cells compared with controls. Moreover, comprehensive immunological workup revealed severely diminished blood-borne regulatory T cell (Treg) frequency and impaired in vitro CD4+ T cell proliferation and Treg generation. CyTOF analysis showed significant shifts in the patient's innate and adaptive immune cells compared with healthy controls and ulcerative colitis patients. CONCLUSIONS: Pathogenic variants in CARMIL2 have been implicated in an immunodeficiency syndrome characterized by recurrent infections, occasionally with concurrent chronic diarrhea. We show that CARMIL2-immunodeficiency is associated with significant alterations in the landscape of immune populations in a patient with prominent gastrointestinal disease. This case provides evidence that CARMIL2 should be a candidate gene when diagnosing children with very early onset inflammatory and eosinophilic gastrointestinal disorders, even when signs of immunodeficiency are not observed.


Assuntos
Colite/diagnóstico , Colite/etiologia , Enterite/diagnóstico , Enterite/etiologia , Eosinofilia/diagnóstico , Eosinofilia/etiologia , Gastrite/diagnóstico , Gastrite/etiologia , Homozigoto , Proteínas dos Microfilamentos/genética , Mutação , Fenótipo , Idade de Início , Sequência de Aminoácidos , Criança , Pré-Escolar , Análise Mutacional de DNA , Estudos de Associação Genética , Predisposição Genética para Doença , Humanos , Imuno-Histoquímica , Imunofenotipagem , Masculino , Proteínas dos Microfilamentos/química , Modelos Moleculares , Relação Estrutura-Atividade , Sequenciamento do Exoma
20.
Mol Genet Metab ; 127(2): 138-146, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-31130326

RESUMO

Gaucher disease (GD) is the most prevalent lysosomal disorder caused by GBA mutations and abnormal glucocerebrosidase function, leading to glucocerebrosideaccumulation mainly in the liver, spleen, bone marrow, lungs, and occasionally in the central nervous system. Gaucher disease type 3c (GD3c) is a rare subtype of the subacute/chronic neuronopathic GD3, caused by homozygosity for the GBA p.Asp448His (D409H) mutation. GD3c is characterized mainly by cardiovascular and neuro-ophthalmological findings. In this paper, we describe four new GD3c patients exhibiting rare cardiovascular, pulmonary and psychiatric findings, as well as atypical disease courses. Review of the GD3c-related literature revealed clinical descriptions of 36 patients, presenting predominantly with cardiovascular calcifications; 15%, including Patient 1b in this study, had non-calcified lesions - fibrosis and atherosclerosis. Only 7.5% of patients have been described without heart disease, including Patient 3; however, Patient 2 had a fulminant coronary disease. Neurological findings in GD3c consist mainly of oculomotor apraxia (80%), which is absent in Patient 3, while other neurological findings are common (65%) but diverse. Patient 1b developed a psychiatric behavioral disorder, which has not been previously described in GD3c. Patient 1b also had interstitial lung disease, which was only described in one GD3c patient as pulmonary fibrosis. In view of these unique features, we recommend a revised surveillance protocol; however, further studies are required to establish the management of these patients and the role of GBA in the described pathologies.


Assuntos
Doença de Gaucher/complicações , Doença de Gaucher/diagnóstico , Mutação , Adolescente , Adulto , Criança , Pré-Escolar , Feminino , Doença de Gaucher/genética , Glucosilceramidase/genética , Cardiopatias/etiologia , Homozigoto , Humanos , Masculino , Transtornos Mentais/etiologia , Fibrose Pulmonar/etiologia , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA