Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 73
Filtrar
1.
Blood ; 142(20): 1708-1723, 2023 11 16.
Artigo em Inglês | MEDLINE | ID: mdl-37699202

RESUMO

Hematopoietic stem and progenitor cell (HSPC) transplantation serves as a curative therapy for many benign and malignant hematopoietic disorders and as a platform for gene therapy. However, growing needs for ex vivo manipulation of HSPC-graft products are limited by barriers in maintaining critical self-renewal and quiescence properties. The role of sphingolipid metabolism in safeguarding these essential cellular properties has been recently recognized, but not yet widely explored. Here, we demonstrate that pharmacologic and genetic inhibition of neutral sphingomyelinase 2 (nSMase-2) leads to sustained improvements in long-term competitive transplantation efficiency after ex vivo culture. Mechanistically, nSMase-2 blockade activates a canonical integrated stress response (ISR) and promotes metabolic quiescence in human and murine HSPCs. These adaptations result in part from disruption in sphingolipid metabolism that impairs the release of nSMase-2-dependent extracellular vesicles (EVs). The aggregate findings link EV trafficking and the ISR as a regulatory dyad guarding HSPC homeostasis and long-term fitness. Translationally, transient nSMase-2 inhibition enables ex vivo graft manipulation with enhanced HSPC potency.


Assuntos
Transplante de Células-Tronco Hematopoéticas , Esfingomielina Fosfodiesterase , Animais , Humanos , Camundongos , Esfingomielina Fosfodiesterase/genética , Esfingomielina Fosfodiesterase/metabolismo , Células-Tronco Hematopoéticas/metabolismo , Esfingolipídeos/metabolismo
2.
Br J Haematol ; 196(2): 274-287, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34258754

RESUMO

Recent advances have facilitated studies of the clonal architecture of the aging haematopoietic system, and provided clues to the mechanisms underlying the origins of hematopoietic malignancy. Much less is known about the clonal composition of haematopoiesis and its impact in bone marrow failure (BMF) disorders, including Fanconi anaemia (FA). Understanding clonality in FA is likely to inform both the marked predisposition to cancer and the rapid erosion of regenerative reserve seen with this disease. This may also hold broader lessons for haematopoietic stem cell biology in other diseases with a clonal restriction. In this review, we focus on the conceptual basis and available tools to study clonality, and highlight insights in somatic mosaicism and malignant evolution in FA in the context of haematopoietic failure and gene therapy.


Assuntos
Evolução Clonal/genética , Anemia de Fanconi/etiologia , Anemia de Fanconi/metabolismo , Variação Genética , Hematopoese/genética , Células-Tronco Hematopoéticas/metabolismo , Mosaicismo , Animais , Biomarcadores , Diferenciação Celular/genética , Rastreamento de Células , Transformação Celular Neoplásica/genética , Transformação Celular Neoplásica/metabolismo , Terapia Combinada , Análise Citogenética , Dano ao DNA , Gerenciamento Clínico , Suscetibilidade a Doenças , Anemia de Fanconi/diagnóstico , Anemia de Fanconi/terapia , Regulação da Expressão Gênica , Terapia Genética , Células-Tronco Hematopoéticas/citologia , Humanos , Imagem Molecular , Transdução de Sinais
3.
Hum Mutat ; 42(11): 1367-1383, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34298585

RESUMO

The congenital sideroblastic anemias (CSAs) are a heterogeneous group of inherited disorders of erythropoiesis characterized by pathologic deposits of iron in the mitochondria of developing erythroblasts. Mutations in the mitochondrial glycine carrier SLC25A38 cause the most common recessive form of CSA. Nonetheless, the disease is still rare, there being fewer than 70 reported families. Here we describe the clinical phenotype and genotypes of 31 individuals from 24 families, including 11 novel mutations. We also review the spectrum of reported mutations and genotypes associated with the disease, describe the unique localization of missense mutations in transmembrane domains and account for the presence of several alleles in different populations.


Assuntos
Anemia Sideroblástica/congênito , Genótipo , Proteínas de Transporte da Membrana Mitocondrial/genética , Mutação , Fenótipo , Pré-Escolar , Feminino , Humanos , Lactente , Recém-Nascido , Masculino
4.
EMBO Rep ; 20(7): e47546, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-31267709

RESUMO

Progressive remodeling of the bone marrow microenvironment is recognized as an integral aspect of leukemogenesis. Expanding acute myeloid leukemia (AML) clones not only alter stroma composition, but also actively constrain hematopoiesis, representing a significant source of patient morbidity and mortality. Recent studies revealed the surprising resistance of long-term hematopoietic stem cells (LT-HSC) to elimination from the leukemic niche. Here, we examine the fate and function of residual LT-HSC in the BM of murine xenografts with emphasis on the role of AML-derived extracellular vesicles (EV). AML-EV rapidly enter HSC, and their trafficking elicits protein synthesis suppression and LT-HSC quiescence. Mechanistically, AML-EV transfer a panel of miRNA, including miR-1246, that target the mTOR subunit Raptor, causing ribosomal protein S6 hypo-phosphorylation, which in turn impairs protein synthesis in LT-HSC. While HSC functionally recover from quiescence upon transplantation to an AML-naive environment, they maintain relative gains in repopulation capacity. These phenotypic changes are accompanied by DNA double-strand breaks and evidence of a sustained DNA-damage response. In sum, AML-EV contribute to niche-dependent, reversible quiescence and elicit persisting DNA damage in LT-HSC.


Assuntos
Vesículas Extracelulares/metabolismo , Células-Tronco Hematopoéticas/metabolismo , Leucemia Mieloide Aguda/metabolismo , Nicho de Células-Tronco , Animais , Linhagem Celular Tumoral , Células Cultivadas , Quebras de DNA de Cadeia Dupla , Feminino , Células-Tronco Hematopoéticas/patologia , Humanos , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , MicroRNAs/genética , MicroRNAs/metabolismo , Proteína Regulatória Associada a mTOR/genética , Proteína Regulatória Associada a mTOR/metabolismo , Proteína S6 Ribossômica/genética
5.
Blood ; 139(5): 640-642, 2022 02 03.
Artigo em Inglês | MEDLINE | ID: mdl-35113152
6.
Stem Cells ; 36(3): 304-312, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29235199

RESUMO

The bone marrow stroma maintains hematopoiesis and coordinately regulates regenerative responses through dynamic interactions with hematopoietic stem and progenitor cells. Recent studies indicate that stromal components in the bone marrow of leukemia patients undergo a process of successive adaptation that in turn exerts dramatic effects on the hematopoietic stem cell compartment and promotes leukemic drug resistance. Therefore, functional changes in discrete marrow stromal populations can be considered an aspect of leukemia biogenesis in that they create an aberrant, self-reinforcing microenvironment. In this review, we will describe the current understanding of the remodeling of the hematopoietic stem cell niche following invasion by leukemia cells. We place emphasis on existing evidence of how mesenchymal stem cells and their progeny facilitate neoplastic growth and describe available models and analytical techniques to understand the conversion of the niche toward disease persistence. Stem Cells 2018;36:304-312.


Assuntos
Células da Medula Óssea/patologia , Leucemia/patologia , Leucemia/fisiopatologia , Células-Tronco Mesenquimais/citologia , Células-Tronco Mesenquimais/fisiologia , Células da Medula Óssea/fisiologia , Células-Tronco Hematopoéticas/fisiologia , Humanos
7.
Haematologica ; 104(10): 1974-1983, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-30948484

RESUMO

Quality of response to immunosuppressive therapy and long-term outcomes for pediatric severe aplastic anemia remain incompletely characterized. Contemporary evidence to inform treatment of relapsed or refractory severe aplastic anemia for pediatric patients is also limited. The clinical features and outcomes for 314 children treated from 2002 to 2014 with immunosuppressive therapy for acquired severe aplastic anemia were analyzed retrospectively from 25 institutions in the North American Pediatric Aplastic Anemia Consortium. The majority of subjects (n=264) received horse anti-thymocyte globulin (hATG) plus cyclosporine (CyA) with a median 61 months follow up. Following hATG/CyA, 71.2% (95%CI: 65.3,76.6) achieved an objective response. In contrast to adult studies, the quality of response achieved in pediatric patients was high, with 59.8% (95%CI: 53.7,65.8) complete response and 68.2% (95%CI: 62.2,73.8) achieving at least a very good partial response with a platelet count ≥50×109L. At five years post-hATG/CyA, overall survival was 93% (95%CI: 89,96), but event-free survival without subsequent treatment was only 64% (95%CI: 57,69) without a plateau. Twelve of 171 evaluable patients (7%) acquired clonal abnormalities after diagnosis after a median 25.2 months (range: 4.3-71 months) post treatment. Myelodysplastic syndrome or leukemia developed in 6 of 314 (1.9%). For relapsed/refractory disease, treatment with a hematopoietic stem cell transplant had a superior event-free survival compared to second immunosuppressive therapy treatment in a multivariate analysis (HR=0.19, 95%CI: 0.08,0.47; P=0.0003). This study highlights the need for improved therapies to achieve sustained high-quality remission for children with severe aplastic anemia.


Assuntos
Anemia Aplástica/tratamento farmacológico , Soro Antilinfocitário/administração & dosagem , Ciclosporina/administração & dosagem , Terapia de Imunossupressão , Anemia Aplástica/epidemiologia , Anemia Aplástica/patologia , Soro Antilinfocitário/efeitos adversos , Pré-Escolar , Ciclosporina/efeitos adversos , Feminino , Seguimentos , Humanos , Lactente , Masculino , Estudos Retrospectivos , Estados Unidos/epidemiologia
8.
Haematologica ; 103(3): 382-394, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29439185

RESUMO

Self-renewal and differentiation are defining characteristics of hematopoietic stem and progenitor cells, and their balanced regulation is central to lifelong function of both blood and immune systems. In addition to cell-intrinsic programs, hematopoietic stem and progenitor cell fate decisions are subject to extrinsic cues from within the bone marrow microenvironment and systemically. Yet, many of the paracrine and endocrine mediators that shape hematopoietic function remain to be discovered. Extracellular vesicles serve as evolutionarily conserved, constitutive regulators of cell and tissue homeostasis, with several recent reports supporting a role for extracellular vesicles in the regulation of hematopoiesis. We review the physiological and pathophysiological effects that extracellular vesicles have on bone marrow compartmental function while highlighting progress in understanding vesicle biogenesis, cargo incorporation, differential uptake, and downstream effects of vesicle internalization. This review also touches on the role of extracellular vesicles in hematopoietic stem and progenitor cell fate regulation and recent advances in therapeutic and diagnostic applications of extracellular vesicles in hematologic disorders.


Assuntos
Vesículas Extracelulares/fisiologia , Hematopoese , Células-Tronco Hematopoéticas , Medula Óssea , Doenças Hematológicas , Humanos
9.
J Biol Chem ; 291(47): 24607-24617, 2016 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-27758863

RESUMO

Mesenchymal stromal cells (MSCs) present in the bone marrow microenvironment secrete cytokines and angiogenic factors that support the maintenance and regenerative expansion of hematopoietic stem and progenitor cells (HSPCs). Here, we tested the hypothesis that extracellular vesicles (EVs) released by MSCs contribute to the paracrine crosstalk that shapes hematopoietic function. We systematically characterized EV release by murine stromal cells and demonstrate that MSC-derived EVs prompt a loss of HSPC quiescence with concomitant expansion of murine myeloid progenitors. Our studies reveal that HSPC expansion by MSC EVs is mediated via the MyD88 adapter protein and is partially blocked by treatment with a TLR4 inhibitor. Imaging of fluorescence protein-tagged MSC EVs corroborated their cellular co-localization with TLR4 and endosomal Rab5 compartments in HSPCs. The dissection of downstream responses to TLR4 activation reveals that the mechanism by which MSC EVs impact HSPCs involves canonical NF-κB signaling and downstream activation of Hif-1α and CCL2 target genes. Our aggregate data identify a previously unknown role for MSC-derived EVs in the regulation of hematopoiesis through innate immune mechanisms and illustrate the expansive cell-cell crosstalk in the bone marrow microenvironment.


Assuntos
Micropartículas Derivadas de Células/metabolismo , Células-Tronco Hematopoéticas/metabolismo , Células-Tronco Mesenquimais/metabolismo , Receptor 4 Toll-Like/metabolismo , Animais , Quimiocina CCL2/metabolismo , Células-Tronco Hematopoéticas/citologia , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Células-Tronco Mesenquimais/citologia , Camundongos , Fator 88 de Diferenciação Mieloide/metabolismo , Proteínas rab5 de Ligação ao GTP/metabolismo
10.
Pediatr Hematol Oncol ; 34(6-7): 365-378, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29211600

RESUMO

Signaling between leukemia cells and nonhematopoietic cells in the bone marrow microenvironment contributes to leukemia cell growth and survival. This complicated extrinsic mechanism of chemotherapy resistance relies on a number of pathways and factors, some of which have yet to be determined. Research on cell-cell crosstalk the bone marrow microenvironment in acute leukemia was presented at the 2016 annual Therapeutic Advances in Childhood Leukemia (TACL) investigator meeting. This review summarizes the mini-symposium proceedings and focuses on chemokine signaling via the cell surface receptor CXCR4, adhesion molecule signaling via integrin α4, and crosstalk between leukemia cells and the bone marrow microenvironment that is mediated through extracellular vesicles.


Assuntos
Medula Óssea/metabolismo , Quimiocinas/metabolismo , Neoplasias Hematológicas/metabolismo , Integrinas/metabolismo , Proteínas de Neoplasias/metabolismo , Transdução de Sinais , Microambiente Tumoral , Animais , Medula Óssea/patologia , Neoplasias Hematológicas/patologia , Humanos
11.
Blood ; 124(3): 437-40, 2014 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-24735966

RESUMO

Pearson marrow pancreas syndrome (PS) is a multisystem disorder caused by mitochondrial DNA (mtDNA) deletions. Diamond-Blackfan anemia (DBA) is a congenital hypoproliferative anemia in which mutations in ribosomal protein genes and GATA1 have been implicated. Both syndromes share several features including early onset of severe anemia, variable nonhematologic manifestations, sporadic genetic occurrence, and occasional spontaneous hematologic improvement. Because of the overlapping features and relative rarity of PS, we hypothesized that some patients in whom the leading clinical diagnosis is DBA actually have PS. Here, we evaluated patient DNA samples submitted for DBA genetic studies and found that 8 (4.6%) of 173 genetically uncharacterized patients contained large mtDNA deletions. Only 2 (25%) of the patients had been diagnosed with PS on clinical grounds subsequent to sample submission. We conclude that PS can be overlooked, and that mtDNA deletion testing should be performed in the diagnostic evaluation of patients with congenital anemia.


Assuntos
Acil-CoA Desidrogenase de Cadeia Longa/deficiência , Anemia de Diamond-Blackfan/diagnóstico , Anemia de Diamond-Blackfan/genética , DNA Mitocondrial/genética , Erros Inatos do Metabolismo Lipídico/diagnóstico , Erros Inatos do Metabolismo Lipídico/genética , Doenças Mitocondriais/diagnóstico , Doenças Mitocondriais/genética , Doenças Musculares/diagnóstico , Doenças Musculares/genética , Acil-CoA Desidrogenase de Cadeia Longa/genética , Criança , Pré-Escolar , Síndrome Congênita de Insuficiência da Medula Óssea , Análise Mutacional de DNA , Diagnóstico Diferencial , Humanos , Lactente , Mutação , Deleção de Sequência
12.
Nucleic Acids Res ; 42(7): e53, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24474068

RESUMO

Insertional oncogene activation and aberrant splicing have proved to be major setbacks for retroviral stem cell gene therapy. Integrase-deficient human immunodeficiency virus-1-derived vectors provide a potentially safer approach, but their circular genomes are rapidly lost during cell division. Here we describe a novel lentiviral vector (LV) that incorporates human ß-interferon scaffold/matrix-associated region sequences to provide an origin of replication for long-term mitotic maintenance of the episomal LTR circles. The resulting 'anchoring' non-integrating lentiviral vector (aniLV) achieved initial transduction rates comparable with integrating vector followed by progressive establishment of long-term episomal expression in a subset of cells. Analysis of aniLV-transduced single cell-derived clones maintained without selective pressure for >100 rounds of cell division showed sustained transgene expression from episomes and provided molecular evidence for long-term episome maintenance. To evaluate aniLV performance in primary cells, we transduced lineage-depleted murine hematopoietic progenitor cells, observing GFP expression in clonogenic progenitor colonies and peripheral blood leukocyte chimerism following transplantation into conditioned hosts. In aggregate, our studies suggest that scaffold/matrix-associated region elements can serve as molecular anchors for non-integrating lentivector episomes, providing sustained gene expression through successive rounds of cell division and progenitor differentiation in vitro and in vivo.


Assuntos
Vetores Genéticos , Lentivirus/genética , Regiões de Interação com a Matriz , Mitose/genética , Plasmídeos/genética , Animais , Linhagem Celular , Expressão Gênica , Células-Tronco Hematopoéticas/metabolismo , Humanos , Interferon beta/genética , Camundongos , Transdução Genética , Transgenes
13.
Blood ; 121(11): 2008-12, 2013 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-23315168

RESUMO

Hematopoietic failure is the predominant clinical manifestation of Fanconi anemia (FA), a rare, recessively inherited disorder. Mutations in 1 of 15 genes that coordinately function in a complex pathway to maintain DNA integrity also predispose patients to constitutional defects in growth and development. The hematologic manifestations have been considered to reflect the progressive loss of stem cells from the postnatal bone marrow microenvironment. Ethical concerns preclude the study of human hematopoiesis in utero. We report significant late gestational lethality and profound quantitative and qualitative deficiencies in the murine Fancc(-/-) fetal liver hematopoietic stem and progenitor cell pool. Fancc(-/-) fetal liver hematopoietic stem and progenitor cells revealed a significant loss of quiescence and decline in serial repopulating capacity, but no substantial difference in apoptosis or levels of reactive oxygen species. Our studies suggest that compromised hematopoiesis in Fancc(-/-) animals is developmentally programmed and does not arise de novo in bone marrow.


Assuntos
Modelos Animais de Doenças , Anemia de Fanconi/embriologia , Anemia de Fanconi/patologia , Hematopoese/fisiologia , Células-Tronco Hematopoéticas/patologia , Camundongos Transgênicos , Animais , Células da Medula Óssea/metabolismo , Células da Medula Óssea/patologia , Células Cultivadas , Embrião de Mamíferos/citologia , Embrião de Mamíferos/metabolismo , Embrião de Mamíferos/patologia , Anemia de Fanconi/genética , Anemia de Fanconi/metabolismo , Proteína do Grupo de Complementação C da Anemia de Fanconi/genética , Proteína do Grupo de Complementação C da Anemia de Fanconi/metabolismo , Proteína do Grupo de Complementação C da Anemia de Fanconi/fisiologia , Feminino , Hematopoese/genética , Transplante de Células-Tronco Hematopoéticas , Células-Tronco Hematopoéticas/metabolismo , Células-Tronco Hematopoéticas/fisiologia , Camundongos , Camundongos Endogâmicos C57BL , Modelos Biológicos , Gravidez
14.
J Cell Sci ; 125(Pt 12): 2837-43, 2012 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-22393240

RESUMO

Cell fusion plays a well-recognized, physiological role during development. Bone-marrow-derived hematopoietic cells have been shown to fuse with non-hematopoietic cells in a wide variety of tissues. Some organs appear to resolve the changes in ploidy status, generating functional and mitotically-competent events. However, cell fusion exclusively involving hematopoietic cells has not been reported. Indeed, genomic copy number variation in highly replicative hematopoietic cells is widely considered a hallmark of malignant transformation. Here we show that cell fusion occurs between cells of the hematopoietic system under injury as well as non-injury conditions. Experiments reveal the acquisition of genetic markers in fusion products, their tractable maintenance during hematopoietic differentiation and long-term persistence after serial transplantation. Fusion events were identified in clonogenic progenitors as well as differentiated myeloid and lymphoid cells. These observations provide a new experimental model for the study of non-pathogenic somatic diversity in the hematopoietic system.


Assuntos
Variação Genética , Células-Tronco Hematopoéticas/citologia , Animais , Diferenciação Celular , Fusão Celular , Células Cultivadas , Variações do Número de Cópias de DNA , Feminino , Transplante de Células-Tronco Hematopoéticas , Masculino , Camundongos , Camundongos Endogâmicos C57BL
15.
Oncotarget ; 15: 609-613, 2024 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-39236060

RESUMO

Lifelong hematopoiesis is sustained by crosstalk between hematopoietic stem and progenitor cells (HSPCs) and specialized bone marrow niches. Acute myeloid leukemia (AML) upends that balance, as leukemic blasts secrete factors that remodel the bone marrow into a self-reinforcing leukemic niche. The inflammatory secretome behind this compartmental adaptation accounts for a progressive decline in hematopoietic function that leads to diagnosis and persists through early treatment. Not surprisingly, the mediators of an acute inflammatory injury and HSPC suppression have attracted much attention in an effort to alleviate morbidity and improve outcomes. HSPCs typically recover during disease remission and re-expand in the bone marrow (BM), but little is known about potentially lasting consequences for stem cells and progenitors. We recently showed that AML-experienced HSPCs actively participate in the inflammatory process during leukemic progression. HSPCs are constituent components of the innate immune system, and elegant studies of infection and experimental inflammation over the past decade have described the generation of an adoptively transferable, innate immune memory. Building on this paradigm, we discuss the potential translational relevance of a durable legacy in AML-experienced HSPC.


Assuntos
Células-Tronco Hematopoéticas , Inflamação , Leucemia Mieloide Aguda , Nicho de Células-Tronco , Humanos , Leucemia Mieloide Aguda/imunologia , Leucemia Mieloide Aguda/patologia , Leucemia Mieloide Aguda/metabolismo , Células-Tronco Hematopoéticas/metabolismo , Células-Tronco Hematopoéticas/imunologia , Animais , Inflamação/imunologia , Inflamação/patologia , Inflamação/metabolismo , Memória Imunológica , Imunidade Inata , Microambiente Tumoral/imunologia , Hematopoese
16.
Sci Adv ; 10(38): eadq1476, 2024 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-39292787

RESUMO

Cross-talk between hematopoietic stem and progenitor cells (HSPCs) and bone marrow (BM) cells is critical for homing and sustained engraftment after transplantation. In particular, molecular and physical adaptation of sinusoidal endothelial cells (ECs) promote HSPC BM occupancy; however, signals that govern these events are not well understood. Extracellular vesicles (EVs) are mediators of cell-cell communication crucial in shaping tissue microenvironments. Here, we demonstrate that integrin α4ß7 on murine HSPC EVs targets uptake into ECs. In BM ECs, HSPC EVs induce up-regulation of C-C motif chemokine receptor 2 (CCR2) ligands that synergize with CXCL12-CXCR4 signaling to promote BM homing. In nonirradiated murine models, marrow preconditioning with HSPC EVs or recombinant CCR2 ligands improves homing and early graft occupancy after transplantation. These findings identify a role for HSPC EVs in remodeling ECs, newly define CCR2-dependent graft homing, and inform novel translational conditioning strategies to improve HSPC transplantation.


Assuntos
Medula Óssea , Vesículas Extracelulares , Células-Tronco Hematopoéticas , Receptores CCR2 , Animais , Camundongos , Medula Óssea/metabolismo , Células da Medula Óssea/metabolismo , Células da Medula Óssea/citologia , Movimento Celular , Quimiocina CXCL12/metabolismo , Células Endoteliais/metabolismo , Células Endoteliais/citologia , Vesículas Extracelulares/metabolismo , Transplante de Células-Tronco Hematopoéticas , Células-Tronco Hematopoéticas/metabolismo , Células-Tronco Hematopoéticas/citologia , Camundongos Endogâmicos C57BL , Receptores CCR2/metabolismo , Receptores CXCR4/metabolismo , Transdução de Sinais , Humanos
17.
bioRxiv ; 2024 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-38617223

RESUMO

Hematopoietic dysfunction has been associated with a reduction in the number of active precursors. However, precursor quantification at homeostasis and under diseased conditions is constrained by the scarcity of available methods. To address this issue, we optimized a method for quantifying a wide range of hematopoietic precursors. Assuming the random induction of a stable label in precursors following a binomial distribution, estimates depend on the inverse correlation between precursor numbers and the variance of precursor labeling among independent samples. Experimentally validated to cover the full dynamic range of hematopoietic precursors in mice (1 to 105), we utilized this approach to demonstrate that thousands of precursors, which emerge after modest expansion during fetal-to-adult transition, contribute to native and perturbed hematopoiesis. We further estimated the number of precursors in a mouse model of Fanconi Anemia, showcasing how repopulation deficits can be classified as autologous (cell proliferation) and non-autologous (lack of precursor). Our results support an accessible and reliable approach for precursor quantification, emphasizing the contemporary perspective that native hematopoiesis is highly polyclonal.

18.
Nat Commun ; 15(1): 1852, 2024 Feb 29.
Artigo em Inglês | MEDLINE | ID: mdl-38424108

RESUMO

Demand-adjusted and cell type specific rates of protein synthesis represent an important safeguard for fate and function of long-term hematopoietic stem cells. Here, we identify increased protein synthesis rates in the fetal hematopoietic stem cell pool at the onset of hematopoietic failure in Fanconi Anemia, a prototypical DNA repair disorder that manifests with bone marrow failure. Mechanistically, the accumulation of misfolded proteins in Fancd2-/- fetal liver hematopoietic stem cells converges on endoplasmic reticulum stress, which in turn constrains midgestational expansion. Restoration of protein folding by the chemical chaperone tauroursodeoxycholic acid, a hydrophilic bile salt, prevents accumulation of unfolded proteins and rescues Fancd2-/- fetal liver long-term hematopoietic stem cell numbers. We find that proteostasis deregulation itself is driven by excess sterile inflammatory activity in hematopoietic and stromal cells within the fetal liver, and dampened Type I interferon signaling similarly restores fetal Fancd2-/- long-term hematopoietic stem cells to wild type-equivalent numbers. Our study reveals the origin and pathophysiological trigger that gives rise to Fanconi anemia hematopoietic stem cell pool deficits. More broadly, we show that fetal protein homeostasis serves as a physiological rheostat for hematopoietic stem cell fate and function.


Assuntos
Anemia de Fanconi , Humanos , Anemia de Fanconi/genética , Anemia de Fanconi/metabolismo , Proteostase , Células-Tronco Hematopoéticas/metabolismo , Ciclo Celular , Feto/metabolismo , Proteína do Grupo de Complementação D2 da Anemia de Fanconi/genética , Proteína do Grupo de Complementação D2 da Anemia de Fanconi/metabolismo
19.
Leukemia ; 38(4): 741-750, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38228679

RESUMO

Inflammation in the bone marrow (BM) microenvironment is a constitutive component of leukemogenesis in acute myeloid leukemia (AML). Current evidence suggests that both leukemic blasts and stroma secrete proinflammatory factors that actively suppress the function of healthy hematopoietic stem and progenitor cells (HSPCs). HSPCs are also cellular components of the innate immune system, and we reasoned that they may actively propagate the inflammation in the leukemic niche. In two separate congenic models of AML we confirm by evaluation of the BM plasma secretome and HSPC-selective single-cell RNA sequencing (scRNA-Seq) that multipotent progenitors and long-lived stem cells adopt inflammatory gene expression programs, even at low leukemic infiltration of the BM. In particular, we observe interferon gamma (IFN-γ) pathway activation, along with secretion of its chemokine target, CXCL10. We show that AML-derived nanometer-sized extracellular vesicles (EVAML) are sufficient to trigger this inflammatory HSPC response, both in vitro and in vivo. Altogether, our studies indicate that HSPCs are an unrecognized component of the inflammatory adaptation of the BM by leukemic cells. The pro-inflammatory conversion and long-lived presence of HSPCs in the BM along with their regenerative re-expansion during remission may impact clonal selection and disease evolution.


Assuntos
Vesículas Extracelulares , Leucemia Mieloide Aguda , Humanos , Células-Tronco Hematopoéticas/metabolismo , Medula Óssea/metabolismo , Leucemia Mieloide Aguda/genética , Inflamação/metabolismo , Vesículas Extracelulares/metabolismo , Microambiente Tumoral
20.
J Mol Diagn ; 26(3): 191-201, 2024 03.
Artigo em Inglês | MEDLINE | ID: mdl-38103590

RESUMO

Inherited bone marrow failure syndromes (IBMFS) are a group of heterogeneous disorders that account for ∼30% of pediatric cases of bone marrow failure and are often associated with developmental abnormalities and cancer predisposition. This article reports the laboratory validation and clinical utility of a large-scale, custom-designed next-generation sequencing panel, Children's Hospital of Philadelphia (CHOP) IBMFS panel, for the diagnosis of IBMFS in a cohort of pediatric patients. This panel demonstrated excellent analytic accuracy, with 100% sensitivity, ≥99.99% specificity, and 100% reproducibility on validation samples. In 269 patients with suspected IBMFS, this next-generation sequencing panel was used for identifying single-nucleotide variants, small insertions/deletions, and copy number variations in mosaic or nonmosaic status. Sixty-one pathogenic/likely pathogenic variants (54 single-nucleotide variants/insertions/deletions and 7 copy number variations) and 24 hypomorphic variants were identified, resulting in the molecular diagnosis of IBMFS in 21 cases (7.8%) and exclusion of IBMFS with a diagnosis of a blood disorder in 10 cases (3.7%). Secondary findings, including evidence of early hematologic malignancies and other hereditary cancer-predisposition syndromes, were observed in 9 cases (3.3%). The CHOP IBMFS panel was highly sensitive and specific, with a significant increase in the diagnostic yield of IBMFS. These findings suggest that next-generation sequencing-based panel testing should be a part of routine diagnostics in patients with suspected IBMFS.


Assuntos
Anemia Aplástica , Doenças da Medula Óssea , Hemoglobinúria Paroxística , Humanos , Criança , Anemia Aplástica/diagnóstico , Anemia Aplástica/genética , Doenças da Medula Óssea/diagnóstico , Doenças da Medula Óssea/genética , Síndrome Congênita de Insuficiência da Medula Óssea , Variações do Número de Cópias de DNA/genética , Reprodutibilidade dos Testes , Hemoglobinúria Paroxística/diagnóstico , Hemoglobinúria Paroxística/genética , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Nucleotídeos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA