Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 49
Filtrar
1.
J Therm Biol ; 122: 103877, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38850622

RESUMO

The objective of the study was to examine the lower limbs skin temperature (TSK) changes in response to exhaustive whole-body exercise in trained individuals in reference to changes in plasma adenosine triphosphate (ATP). Eighteen trained participants from distinct sport type ‒ endurance (25.2 ± 4.9 yr) and speed-power (25.8 ± 3.1 yr), and 9 controls (24,9 ± 4,3 yr) ‒ were examined. Lower limbs TSK and plasma ATP measures were applied in parallel in response to incremental treadmill test and during 30-min recovery period. Plasma ATP kinetics were inversely associated to changes in TSK. The first significant decrease in TSK (76-89% of V˙ O2MAX) occurred shortly before a significant plasma ATP increase (86-97% of V˙ O2MAX). During recovery, TSK increased, reaching pre-exercise values (before exercise vs. after 30-min recovery: 31.6 ± 0.4 °C vs. 32.0 ± 0.8 °C, p = 0.855 in endurance; 32.4 ± 0.5 °C vs. 32.9 ± 0.5 °C, p = 0.061 in speed-power; 31.9 ± 0.7 °C vs. 32.4 ± 0.8 °C, p = 0.222 in controls). Plasma ATP concentration did not returned to pre-exercise values in well trained participants (before exercise vs. after 30-min recovery: 699 ± 57 nmol l-1 vs. 854 ± 31 nmol l-1, p < 0.001, η2 = 0.961 and 812 ± 35 nmol l-1 vs. 975 ± 55 nmol l-1, p < 0.001, η2 = 0.974 in endurance and speed-power, respectively), unlike in controls (651 ± 40 nmol l-1 vs. 687 ± 61 nmol·l-1, p = 0.58, η2 = 0.918). The magnitude of TSK and plasma ATP response differed between the groups (p < 0.001, η2 = 0.410 for TSK; p < 0.001, η2 = 0.833 for plasma ATP). We conclude that lower limbs TSK change indirectly corresponds to the reverse course of plasma ATP during incremental exercise and the magnitude of the response depends on the level of physical activity and the associated to it long-term metabolic adaptation.


Assuntos
Trifosfato de Adenosina , Exercício Físico , Extremidade Inferior , Temperatura Cutânea , Humanos , Masculino , Trifosfato de Adenosina/sangue , Trifosfato de Adenosina/metabolismo , Adulto , Exercício Físico/fisiologia , Extremidade Inferior/fisiologia , Extremidade Inferior/irrigação sanguínea , Adulto Jovem , Feminino , Resistência Física
2.
J Therm Biol ; 123: 103918, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-39018769

RESUMO

During strenuous exercise, skin temperature (Tsk) plays an essential role in thermoregulatory processes. As indicated in the literature, its response might be influenced by body composition, among other factors. Hence, the objectives of this investigation were to determine whether there is a correlation between selected body components, specifically fat tissue and muscle tissue, and Tsk during graded exercise and recovery in athletes, and to identify which body component exhibits the strongest correlation with Tsk. Participants were grouped according to their aerobic capacity (VO2max/kg). A significant main effect was observed for the test stages (p < .001, η2 = 0.71), with Tsk decreasing from the start of the exercise, significantly decreasing at 12 km/h-1 (p < .001), and then increasing after exercise, especially within the first 5 min of recovery. Weak and non-significant effect for group/stage interaction was detected (p = .374, η2 = 0.03). A significant negative correlation was found between Tsk and both total tissue fat [%] (-0.51 < r < -0.63, p < .001) and lower limb tissue fat [%] (-0.50 < r < -0.71, p < .001) across all test stages. The correlation between Tsk and BMI was inconsistent, appearing only during the first stage of exercise and throughout recovery. No correlation was observed between Tsk and skeletal muscle mass, appendicular lean soft tissue, or relative skeletal muscle index. Endurance running to exhaustion leads to a progressive decrease in the Tsk of the lower extremity, followed by rewarming during recovery. The observed inverse correlation between adipose tissue and Tsk, along with the distinct temperature trends in groups with varying levels of fat tissue, could imply that the skin and subcutaneous tissue complex may play a more intricate role in thermal energy exchange beyond its insulating function. This implies a multifaceted involvement of these tissues in thermoregulation.


Assuntos
Composição Corporal , Exercício Físico , Temperatura Cutânea , Humanos , Masculino , Adulto , Adulto Jovem , Atletas , Feminino , Músculo Esquelético/fisiologia , Regulação da Temperatura Corporal , Tecido Adiposo/metabolismo , Tecido Adiposo/fisiologia
3.
Int J Mol Sci ; 25(11)2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38891799

RESUMO

Emerging research links the endocannabinoid system to gut microbiota, influencing nociception, mood, and immunity, yet the molecular interactions remain unclear. This study focused on the effects of probiotics on ECS markers-cannabinoid receptor type 2 (CB2) and fatty acid amide hydrolase (FAAH)-in dancers, a group selected due to their high exposure to physical and psychological stress. In a double-blind, placebo-controlled trial (ClinicalTrials.gov NCT05567653), 15 dancers were assigned to receive either a 12-week regimen of Lactobacillus helveticus Rosell-52 and Bifidobacterium longum Rosell-17 or a placebo (PLA: n = 10, PRO: n = 5). There were no significant changes in CB2 (probiotic: 0.55 to 0.29 ng/mL; placebo: 0.86 to 0.72 ng/mL) or FAAH levels (probiotic: 5.93 to 6.02 ng/mL; placebo: 6.46 to 6.94 ng/mL; p > 0.05). A trend toward improved sleep quality was observed in the probiotic group, while the placebo group showed a decline (PRO: from 1.4 to 1.0; PLA: from 0.8 to 1.2; p = 0.07841). No other differences were noted in assessed outcomes (pain and fatigue). Probiotic supplementation showed no significant impact on CB2 or FAAH levels, pain, or fatigue but suggested potential benefits for sleep quality, suggesting an area for further research.


Assuntos
Amidoidrolases , Endocanabinoides , Fadiga , Dor , Probióticos , Sono , Humanos , Probióticos/uso terapêutico , Endocanabinoides/metabolismo , Feminino , Método Duplo-Cego , Fadiga/metabolismo , Adulto , Masculino , Dor/tratamento farmacológico , Sono/efeitos dos fármacos , Sono/fisiologia , Amidoidrolases/metabolismo , Adulto Jovem , Receptor CB2 de Canabinoide/metabolismo , Microbioma Gastrointestinal/efeitos dos fármacos , Adolescente
4.
BMC Musculoskelet Disord ; 24(1): 196, 2023 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-36927409

RESUMO

BACKGROUND: Apart from the positive effect of lumbar traction on structural changes within the spine in patients with low back pain, it is likely that therapeutic effects are correlated with pain biomarkers in the blood. Among them, systemic metabolic factors related to obesity may play an important role. This is the first study designed to examine the effectiveness of traction therapy in two experimental groups with considerably different BMI and to assess relationships between blood biomarkers and low back pain intensity. METHODS: In the prospective clinical trial, women suffering from chronic low back pain were allocated into the normal-weight or obesity groups. Patients in both groups underwent twenty sessions of lumbar traction therapy (30 min a day, continuous mode with a force level of 25-30% of body weight). Before and after therapy subjective assessments of pain (VAS and PPT) were performed, and serum concentrations of aggrecan chondroitin sulfate 846 epitope (CS-846), neuropeptide Y, leptin, adipsin and growth and differentiation factor 15 (GDF-15) were determined. The data were statistically evaluated for 28 women. RESULTS: After therapy, the maximal low back pain decreased in both groups, GDF-15 concentration was reduced in the normal-weight group and increased in the obesity group, and CS-846 concentration decreased in the obesity group. The sensation of PPT in the lumbar spine and mean concentrations of neuropeptide Y, leptin and adipsin did not change in both groups. However, the relationships of GDF-15, leptin, and adipsin concentrations with the perception of pain were revealed. CONCLUSION: Distinct differences between the normal-weight and obesity groups pointed on the role of excessive adipose tissue in aggravating the inflammatory processes and in the development of low back pain. Adipsin, CS-846 and GDF-15 aspire to be the low back pain biomarkers in women with obesity, but there is a need for further research to answer whether they might be considered reliable biomarkers for the prognosis and monitoring of chronic low back treatment. TRIAL REGISTRATION: NCT04507074, registered prospectively on July 6, 2020.


Assuntos
Dor Lombar , Humanos , Feminino , Dor Lombar/diagnóstico , Dor Lombar/terapia , Tração , Índice de Massa Corporal , Leptina , Fator D do Complemento , Estudos Prospectivos , Fator 15 de Diferenciação de Crescimento , Neuropeptídeo Y , Vértebras Lombares , Obesidade/complicações , Obesidade/terapia , Resultado do Tratamento
5.
J Strength Cond Res ; 35(8): 2222-2229, 2021 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-30844985

RESUMO

ABSTRACT: Janowski, M, Zielinski, J, and Kusy, K. Exercise response to real combat in elite taekwondo athletes before and after competition rule changes. J Strength Cond Res 35(8): 2222-2229, 2021-We hypothesize that recent (2017) changes in competition rules significantly affected kinematic (mechanical activity) and physiological (cardiopulmonary indices and lactate concentration) profile of the taekwondo combat, which is currently becoming more demanding in terms of exercise intensity and fatigue. Twenty two male and female elite taekwondo athletes were followed up for over 2 years. In total, 258 real tournament combats were included in the analysis (133 in old rules and 125 in new rules). Kinematic and physiological characteristics were recorded using a biomonitor (BioHarness 3; Zephyr Technologies) worn by athletes during tournaments. Blood samples were drawn after each combat for lactate concentration. Our research showed that recent amendments of competition rules were linked to a noticeable shift toward higher kinematic output and, consequently, increased physiological response. Significant increments in kinematic variables (3-8%), heart rate (HR) (1.5-1.8%), energy expenditure (EE) (3-5%), overall physiological load (2-4%), and lactate concentration (∼15% immediately after exercise and ∼25% in recovery) suggest that new rules are more demanding, although the statistical effect size is only small or moderate. In conclusion, after competition rule changes, there has been a shift in taekwondo combat profile toward greater body movement dynamics, higher intensity, and greater postexercise fatigue. The values of key indices of exercise response (mechanical activity, HR, EE, and lactate concentration) during tournaments are near or exceeding the maximum attained during progressive exercise until exhaustion. Therefore, more focus is needed on taekwondo-specific high-intensity training and postcombat recovery to adapt athletes to increased competition requirements.


Assuntos
Artes Marciais , Atletas , Exercício Físico , Teste de Esforço , Feminino , Humanos , Ácido Láctico , Masculino
6.
J Strength Cond Res ; 35(9): 2591-2598, 2021 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-31268986

RESUMO

ABSTRACT: Kantanista, A, Kusy, K, Pospieszna, B, Korman, P, Wielinski, D, and Zielinski, J. Combined analysis of blood ammonia and lactate levels as a practical tool to assess the metabolic response to training sessions in male and female sprinters. J Strength Cond Res 35(9): 2591-2598, 2021-Previous research has mainly focused on blood ammonia and lactate concentration changes in response to exercise in laboratory settings. The aim of this study was to present a combined analysis of blood ammonia and lactate levels obtained during various training sessions performed under real training conditions. Differences between the sexes were also analyzed. The study subjects included 9 male and 8 female sprinters competing at the international level. The two-way analyses of variance, with repeated measures (time × sex), for lactate and blood ammonia concentrations during strength, speed (only lactate), speed with baton exchange, and speed endurance training sessions were significant. Blood ammonia and lactate levels obtained during repeated sprints were higher in male than female athletes. Peak lactate concentrations obtained from different training sessions were different in the female (F(3, 18) = 49.82, p ≤ 0.001, η2 = 0.893) and male (F(3, 21) = 312.26, p ≤ 0.001, η2 = 0.978) athletes; post hoc analyses of the men and women showed differences in maximum lactate concentration between training sessions, except in the speed and strength sessions. Peak ammonia concentrations obtained in the different training sessions were also different in the female (F(3, 18) = 121.06, p ≤ 0.001, η2 = 0.953) and male (F(3, 21) = 196.04, p ≤ 0.001, η2 = 0.965) athletes; in both the men and women, significant differences in maximum blood ammonia concentrations were found between the training sessions, except for the speed and speed with baton exchange training sessions. The results of this study indicate that the combined analysis of lactate and blood ammonia concentration provides the coach with valuable additional information about the level of adenosine triphosphate breakdown, the energy system contribution involved in muscle energy coverage during very short, repeated maximal sprints, and, most importantly, allows the coach to check whether preworkout goals were actually met.


Assuntos
Amônia , Atletas , Exercício Físico , Teste de Esforço , Feminino , Humanos , Ácido Láctico , Masculino
7.
J Strength Cond Res ; 34(2): 355-364, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31469767

RESUMO

Wlodarczyk, M, Kusy, K, Slominska, E, Krasinski, Z, and Zielinski, J. Change in lactate, ammonia, and hypoxanthine concentrations in a 1-year training cycle in highly trained athletes: applying biomarkers as tools to assess training status. J Strength Cond Res 34(2): 355-364, 2020-The aim was to determine changes in biomarker (LA, NH3, purine metabolites) blood concentration during graded exercise and recovery throughout an annual training cycle in highly trained athletes of different training profiles. The study included 12 sprinters (SP, 21-30 years), 11 triathletes (TR, 20-31 years), 12 futsal players (FU, 19-31 years), and 13 amateur runners (AM, 20-33 years). Purine metabolite (hypoxanthine, xanthine, uric acid), ammonia (NH3), and lactate (LA) concentrations were determined at rest, during an incremental treadmill exercise test (every 3 minutes), and during recovery (5, 10, 15, 20, and 30 minutes postexercise) in 4 phases of an annual training cycle. Purine metabolite concentration was determined from plasma, whereas LA and NH3 from whole blood. For LA during exercise and recovery, certain significant differences between training phases within groups were observed for FU, TR, and SP but not for AM. For NH3, the greatest differences between examination points were observed for SP and TR near maximal exercise and in the first few stages of recovery. For hypoxanthine (Hx), the largest amount of differences between examination points was observed for FU, TR, and FU throughout the entire exercise spectrum. Biomarker concentration dynamics change during an incremental exercise test and postexercise in an annual training cycle. Biomarker responses differ depending on training type and magnitude of training loads used in various phases of an annual training cycle. When assessing training status using an incremental exercise test throughout an annual training cycle, NH3 and Hx concentration changes are more sensitive compared with LA.


Assuntos
Amônia/sangue , Atletas , Hipoxantina/sangue , Ácido Láctico/sangue , Condicionamento Físico Humano , Aptidão Física , Adulto , Biomarcadores/sangue , Teste de Esforço , Humanos , Masculino , Ácido Úrico/sangue , Xantina/sangue , Adulto Jovem
8.
J Strength Cond Res ; 33(5): 1192-1200, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-30908377

RESUMO

Wlodarczyk, M, Kusy, K, Slominska, E, Krasinski, Z, and Zielinski, J. Changes in blood concentration of adenosine triphosphate metabolism biomarkers during incremental exercise in highly trained athletes of different sport specializations. J Strength Cond Res 33(5): 1192-1200, 2019-We hypothesized that (a) high-level specialized sport training causes different adaptations that induce specific biomarker release dynamics during exercise and recovery and (b) skeletal muscle mass affects biomarker release. Eleven sprinters (21-30 years), 16 endurance runners (18-31 years), 12 futsal players (18-29 years), and 12 amateur runners as controls (22-33 years) were examined. Hypoxanthine (Hx), xanthine (X), uric acid (UA), ammonia (NH3), and lactate (LA) concentrations were determined at rest, during an incremental treadmill exercise test (every 3 minutes), and during recovery (5, 10, 15, 20, and 30 minutes after exercise). Hx, X, and UA concentration was determined from plasma, while LA and NH3 from whole blood, and muscle mass was assessed using dual X-ray absorptiometry method. At rest, during incremental exercise, and up to 30 minutes into the postexercise recovery period, sprinters had lowest Hx, X, and UA concentrations, and endurance athletes had lowest NH3 concentrations. For LA during exercise, the lowest concentrations were noted in endurance athletes, except when reaching maximum intensity, where the differences between groups were not significant. There were no significant correlations observed between skeletal muscle mass and biomarker concentration at maximal intensity and recovery in any group. In conclusion, the magnitude of exercise-induced biomarker concentration is only related to training adaptations through specific training profile but not to muscle mass. In addition, the results suggest that combined measuring of LA, NH3, and Hx concentration in blood is useful in indirectly reflecting key changes in exercise- and training-induced energy status. Further research should focus on studying how specific training sessions affect individual biomarker response in highly trained athletes.


Assuntos
Amônia/sangue , Hipoxantina/sangue , Ácido Láctico/sangue , Músculo Esquelético/anatomia & histologia , Corrida/fisiologia , Ácido Úrico/sangue , Xantina/sangue , Absorciometria de Fóton , Adaptação Fisiológica/fisiologia , Trifosfato de Adenosina/metabolismo , Adolescente , Adulto , Biomarcadores/sangue , Teste de Esforço , Humanos , Músculo Esquelético/diagnóstico por imagem , Tamanho do Órgão , Aptidão Física/fisiologia , Adulto Jovem
9.
Med Probl Perform Art ; 34(1): 25-32, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-30826818

RESUMO

AIMS: To compare the differences in bone mineral density (BMD) at loaded and non-loaded skeletal sites in professional ballet dancers. We hypothesized that in both male and female elite ballet dancers, a significant difference in BMD will be observed between impact and non-impact sites. METHODS: 44 elite ballet dancers, 22 men (age 26.4±5.9 yrs) and 22 women (age 24.9±5.3 yrs), were examined. BMD measurements were performed using dual-energy x-ray absorptiometry at three skeletal sites-forearm (FA), lumbar spine (LS), and femoral neck (FN)-and analyzed using t-tests, ANOVA, and linear regression models. Information about career duration, training volume, health habits, and menstrual disorders (women) was collected. RESULTS: Z-scores for LS and FN were significantly higher in men than in women. However, Z-scores for FA were similar in men and women and fell below the expected range for age (<-2.0), and they were significantly lower than those for LS and FN. With longer career duration, a trend was observed towards lower Z-scores for FN in men and towards higher Z-scores for FA in women. CONCLUSION: In ballet dancers, FA mineralization is extremely low compared to loaded skeletal sites. Male dancers may have lowered forearm BMD despite the absence of risk factors present in female dancers (menstrual disorders). Professional ballet dancers may be at risk of local osteopenia due to the "local non-impact" characteristics of ballet dance, and use of the 33% distal radius region for the accurate assessment of bone mineral status should be investigated further in this population.


Assuntos
Doenças Ósseas Metabólicas , Dança , Absorciometria de Fóton , Adulto , Densidade Óssea , Dança/fisiologia , Feminino , Antebraço , Humanos , Masculino , Adulto Jovem
10.
Exerc Sport Sci Rev ; 43(1): 57-64, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25390294

RESUMO

So far, aging studies have concentrated on endurance athletes. Master sprint-trained athletes were not the main focus of attention. We propose the novel hypothesis that the sprint model of lifelong physical training that involves high-intensity exercise is at least as beneficial as moderate-intensity endurance exercise for successful aging.


Assuntos
Envelhecimento , Resistência Física/fisiologia , Corrida/fisiologia , Arritmias Cardíacas/etiologia , Glicemia/metabolismo , Distribuição da Gordura Corporal , Densidade Óssea , Humanos , Lipídeos/sangue , Músculo Esquelético/inervação , Músculo Esquelético/fisiologia , Consumo de Oxigênio , Educação Física e Treinamento , Medição de Risco , Corrida/lesões , Ruptura/etiologia , Traumatismos dos Tendões/etiologia
11.
Exerc Sport Sci Rev ; 43(4): 214-21, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26196868

RESUMO

Cardiorespiratory and biochemical indicators typically used by contemporary elite athletes seem to have limited applicability. According to some recent studies, purine metabolism better reflects exercise response and muscle adaptation in this group. We propose using purine derivatives, especially plasma hypoxanthine concentration, as indicators of training status in consecutive training phases in highly trained athletes.


Assuntos
Adaptação Fisiológica/fisiologia , Desempenho Atlético/fisiologia , Hipoxantina/sangue , Músculo Esquelético/fisiologia , Educação Física e Treinamento , Nucleotídeos de Adenina/metabolismo , Biomarcadores/sangue , Comportamento Competitivo/fisiologia , Eritrócitos/metabolismo , Humanos , Hipoxantina Fosforribosiltransferase/sangue , Redes e Vias Metabólicas , Resistência Física/fisiologia
12.
PeerJ ; 12: e17863, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39193515

RESUMO

Background: Long-term adaptations and ongoing training seem to modify the energy system contribution in highly trained individuals. We aimed to compare the energy metabolism profile during sprint exercise in athletes of different specialties. Methods: Endurance (n = 17, 20.3 ± 6.0 yrs), speed-power (n = 14, 20.3 ± 2.5 yrs), and mixed (n = 19, 23.4 ± 4.8 yrs) athletes performed adapted 15-second all-out test before and after a general preparation training period. The contribution of phosphagen, glycolytic, and aerobic systems was calculated using the three-component PCr-LA-O2 method. Results: Between-group differences were observed in the contribution of energy systems in the first and second examinations. The proportions were 47:41:12 in endurance, 35:57:8 in team sports, and 45:48:7 in speed-power athletes. Endurance athletes differed in the phosphagen (p < 0.001) and glycolytic systems (p = 0.006) from team sports and in the aerobic system from speed-power athletes (p = 0.003). No substantial shifts were observed after the general preparatory phase, except a decrease in aerobic energy contribution in team sports athletes (p = 0.048). Conclusion: Sports specialization and metabolic profile influence energy system contribution during sprint exercise. Highly trained athletes show a stable energy profile during the general preparation phase, indicative of long-term adaptation, rather than immediate training effects.


Assuntos
Atletas , Metabolismo Energético , Humanos , Metabolismo Energético/fisiologia , Masculino , Adulto Jovem , Adulto , Corrida/fisiologia , Resistência Física/fisiologia , Adaptação Fisiológica/fisiologia , Feminino , Adolescente , Glicólise/fisiologia , Consumo de Oxigênio/fisiologia
13.
J Clin Med ; 13(16)2024 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-39200953

RESUMO

Background/Objectives: A high level of specific metabolic capacity is essential for maximal sprinting in both male and female athletes. Various factors dictate sex differences in maximal power production and energy utilization. This study aims to compare the contribution of energy systems between male and female athletes with similar sport-specific physiological adaptations during a 15-s sprint exercise. Methods: The endurance group consisted of 17 males (23 ± 7 y) and 17 females (20 ± 2 y). The speed-power group included 14 males (21.1 ± 2.6 y) and 14 females (20 ± 3 y). The contribution of phosphagen, glycolytic, and aerobic systems was determined using the three-component PCr-LA-O2 method. Results: Significant differences were observed in the energy expenditure for all systems and total energy expenditure between males and females in both groups (p = 0.001-0.013). The energy expenditure in kJ for individual systems (phosphagen-glycolytic-aerobic) was 35:25:7 vs. 20:16:5 in endurance males vs. female athletes, respectively. In the speed-power group, male athletes expended 33:37:6 kJ and female athletes expended 21:25:4 kJ, respectively. The percentage proportions did not differ between males and females in any system. The contribution of the phosphagen-glycolytic-aerobic systems was 52:37:11 vs. 48:39:13 in endurance male and female athletes, respectively. For speed-power males vs. female athletes, the proportions were 42:50:8 vs. 41:50:9, respectively. Conclusions: Despite the differences in body composition, mechanical output, and absolute energy expenditure, the energy system contribution appears to have a similar metabolic effect between male and female athletes engaged in sprint exercises with similar sport-related adaptations. The magnitude and profile of sex differences are related to sports discipline.

14.
BMC Sports Sci Med Rehabil ; 16(1): 216, 2024 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-39407226

RESUMO

BACKGROUND: Nicotinamide adenine dinucleotide (NAD+), nicotinamide adenine dinucleotide phosphate (NADP+), and their reduced forms (NADH and NADPH) are the vital cofactors for most cellular oxidation/reduction reactions and therefore influence most critical pathways in cellular metabolism. This study aimed to predict the trends of age-related changes in erythrocyte NAD+ and NADP+ concentrations in elite athletes compared to untrained controls and to assess whether life-long physical training stimulates favorable adaptations in erythrocyte NAD(P)+ concentrations. METHODS: Erythrocyte concentrations of NAD+ and NADP+ were measured in 68 elite endurance runners (20-81 years), 58 elite sprinters (21-90 years), and 62 untrained individuals (20-68 years). Linear regression analyses were performed to estimate longitudinal relationships and cross-sectional rates of change between age and erythrocyte NAD+ and NADP+ levels. One-way analysis of variance was used to determine differences between the studied groups. RESULTS: In all three groups, the erythrocyte NAD+ and NADP+ concentrations significantly decreased with advancing age, suggesting gradual deterioration of NAD-related regulatory functions in older individuals. However, the concentration of erythrocyte NAD(P)+, regardless of age category, was higher in the athletic groups compared to less active controls. CONCLUSIONS: Our research shows that systematic sports participation, especially of a sprint-oriented nature, can be treated as a natural and effective strategy promoting cellular NAD(P)+ anabolism and thus cells' energy and redox metabolism. TRIAL REGISTRATION: The study was retrospectively registered in the clinical trials registry on 2021-11-09 (NCT05113914).

15.
Diabetes Metab Syndr Obes ; 17: 93-106, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38204866

RESUMO

Background: Circuit training is an exercise mode, that may include both endurance and resistance components. There are premises that a combination of these two modalities brings additional benefits, particularly in improving insulin sensitivity. The retinol-binding protein 4 (RBP4) may inhibit signaling from insulin metabolic pathways in skeletal muscles, thus developing insulin resistance. This study aimed to evaluate whether moderate intensity circuit training combining strength and endurance exercise induces changes in tissue insulin sensitivity, carbohydrate and lipid metabolism, and serum RBP4 levels in insulin-resistant women. Methods: In this clinical controlled trial women diagnosed with insulin-resistance were randomly divided into two groups. The training group (T) performed circuit training combining strength (50%-80%1RM) and endurance (50%-75%HRR) exercise on five weight and two cardio machines, for 33 minutes, three times per week, for 3 months. Women from the control non-training group (NT) did not change their previous physical activity. At the beginning of the study and after the intervention period, a one-repetition maximum, body mass, and composition, resting heart rate (HR), blood pressure, glucose, insulin, blood lipids, thyroid-stimulating hormone (TSH), insulin-like growth factor-1 (IGF-1), RBP4, and insulin resistance (HOMA-IR) were measured. The results of 27 patients were analyzed using a two-way repeated measures ANOVA. Results: Significant differences in the pattern of change over time between the groups for resting HR (p < 0.010) and total lean mass (p < 0.039) were found. No differences in HOMA-IR, and RBP4 were observed post-study compared to pre-study in the T group. A significant correlation between RBP4 and TSH concentration was found. Conclusion: Twelve-week circuit training combining strength and endurance exercise has minor effects on HOMA-IR, glucose and lipid metabolism, IGF-1, TSH, and RBP4. Although moderate-intensity circuit training is considered safe, its effectiveness in patients with overweight and mild obesity may be insufficient to reduce insulin resistance. Trial Registration: ClinicalTrials.gov: NCT04528693, registered August 23, 2020.

16.
PeerJ ; 12: e17040, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38560450

RESUMO

Background: During physical exercise, the level of hematological parameters change depending on the intensity and duration of exercise and the individual's physical fitness. Research results, based on samples taken before and after exercise, suggest that hematological parameters increase during incremental exercise. However, there is no data confirming this beyond any doubt. This study examined how red blood cell (RBC) parameters change during the same standard physical exertion in athletes representing different physiological training profiles determined by sport discipline. Methods: The study included 39 highly trained male members of national teams: 13 futsal players, 12 sprinters, and 14 triathletes. We used multiple blood sampling to determine RBC, hemoglobin (Hb), hematocrit value (Hct), mean corpuscular volume (MCV), mean corpuscular hemoglobin (MCH), mean corpuscular hemoglobin concentration (MCHC), and red blood cell distribution width (RDW) before, during (every 3 min), and after (5, 10, 15, 20, and 30 min) an incremental treadmill exercise test until exhaustion. Results: There were no significant exercise-induced differences in RBC parameters between athletic groups. No significant changes were recorded in RBC parameters during the low-intensity phase of exercise. RBC, Hb, and Hct increased significantly during incremental physical exercise, and rapidly returned to resting values upon test termination. Conclusions: The general pattern of exercise-induced changes in RBC parameters is universal regardless of the athlete's physiological profile. The changes in RBC parameters are proportional to the intensity of exercise during the progressive test. The increase in hemoglobin concentration associated with the intensity of exercise is most likely an adaptation to the greater demand of tissues, mainly skeletal muscles, for oxygen.


Assuntos
Eritrócitos , Esportes , Humanos , Masculino , Exercício Físico , Atletas , Hemoglobinas
17.
Sci Rep ; 14(1): 2237, 2024 01 26.
Artigo em Inglês | MEDLINE | ID: mdl-38278863

RESUMO

The study aimed to evaluate the lower limb skin temperature (Tsk) and blood concentrations of lactate (LA) and ammonia (NH3) during exercise and recovery. Eleven elite sprint athletes (25 ± 3.4 yrs) and 11 elite endurance athletes (24.45 ± 5.4 yrs) performed an incremental running test until exhaustion. Body composition was estimated using the DXA method. Thermograms of the anterior and posterior surfaces of the lower limbs were recorded at rest, before each test stage (every 3 min, starting from 10 km h-1 and increasing by 2 km h-1), and in the 5th, 10th, 15th, 20th, and 30th minute of recovery. Endurance athletes had a higher maximum oxygen uptake than sprint athletes (5.0 ± 0.7 vs 4.3 ± 0.4 l·kg-1, p = 0.018), lower percentage of lean content (79 ± 2 vs 83 ± 2%, p < 0.001), and a higher percentage of fat content in the lower limbs (17 ± 2 vs 12 ± 2%, p < 0.001). In both groups, a significant decrease in Tsk was observed compared to resting value (endurance athletes-31.5 ± 0.6 °C; sprint athletes-32.3 ± 0.6 °C), during exercise (p < 0.001) and rewarming during recovery (p < 0.001). However, endurance athletes had a lower Tsk than sprint athletes at the exhaustion point (30.0 ± 1.1 vs 31.6 ± 0.8 °C, p < 0.05) and the pattern of change in Tsk differed between groups (p < 0.001). Tsk in the endurance athletes group decreased throughout the exercise protocol and returned more rapidly to initial values during recovery, while Tsk in the sprint group stabilised between moderate intensity and exhaustion, recovering more slowly after exercise. Both LA (endurance athletes-max 10.2 ± 1.5; sprint athletes-max 10.1 ± 1.4 mmol⋅L-1, p < 0.001) and NH3 (endurance athletes-max 75.6 ± 11.5; sprint athletes-max 76.7 ± 9.0 mmol⋅L-1, p < 0.001) increased during exercise and decreased during recovery (p < 0.001). During exercise, lower levels and slower increases in LA were observed during exercise in the endurance athletes' group (p < 0.05). A negative correlation was revealed between Tsk and fat percentage (r = -0.43 to -0.71, p < 0.05). Tsk was positively correlated with LA during recovery (r = 0.43 to 0.48, p < 0.05), and negatively during recovery (r = -0.45 to -0.54, p < 0.05). Differences between groups in maximum aerobic capacity, the pattern of change in Tsk, and the correlation between Tsk and LA suggest that individuals who decrease less Tsk during exercise and higher Tsk during recovery are those with better aerobic capacity. In addition, athletes with less body fat dissipate heat from their tissues more efficiently.


Assuntos
Amônia , Ácido Láctico , Humanos , Temperatura Cutânea , Consumo de Oxigênio , Resistência Física/fisiologia , Teste de Esforço , Oxigênio , Atletas
18.
J Clin Med ; 13(17)2024 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-39274513

RESUMO

Background/Objectives: Free amino acids substantially contribute to energy metabolism. Also, their profile may identify (over)training status and effectiveness. The long-term effects of speed-power training on plasma free amino acid (PFAA) profiles are not known. We aimed to observe variations in PFAA levels in high-performance sprinters in a six-month training cycle. Methods: Ten male athletes (24.6 ± 3.3 years) were examined during four training phases: transition (1 month), general preparation (2 months), specific preparation (1 month), and pre-competition/competition (2 months). Venous blood was collected at rest, after exhaustive exercise, and recovery. Forty-two PFAAs were analyzed by the LC-ESI-MS/MS method. Results: Significant decreases in resting concentrations were observed between the transition and competition phases for glutamine (762 ± 117 vs. 623 ± 53 µmol∙L-1; p < 0.001, η2 = 0.47) and histidine (89 ± 15 vs. 75 ± 10 µmol∙L-1; p = 0.010, η2 = 0.27), whereas ß-alanine (30 ± 7 vs. 41 ± 9 µmol∙L-1; p = 0.024, η2 = 016) and sarcosine (3.6 ± 0.4 vs. 4.8 ± 0.6 µmol∙L-1; p = 0.006, η2 = 0.188) levels increased. Between the specific and competition phases, significant decreases in the resting levels of 1-methylhistidine (22.1 ± 19.4 vs. 9.6 ± 8.8 µmol∙L-1; p = 0.14, η2 = 0.19), 3-methylhistidine (7.1 ± 1.5 vs. 6.5 ± 1.6 µmol∙L-1; p = 0.009, η2 = 0.18), citrulline (40 ± 10 vs. 29 ± 4 µmol∙L-1; p = 0.05, η2 = 0.29), and ornithine (74 ± 15 vs. 56 ± 10 µmol∙L-1; p = 0.015, η2 = 185) were noticed. Also, for ß-alanine and sarcosine, the pattern of response to exercise strongly changed between the training phases. Blood ammonia levels at exhaustion decreased between the transition and competition phases (32 ± 4 vs. 23 ± 5 µmol∙L-1; p < 0.001, η2 = 0.67), while lactate, the phenylalanine-tyrosine ratio, the glutamine-glutamate ratio, hematological parameters, and cardiorespiratory indices remained at similar levels. Conclusions: Speed-power training seems to affect PFAAs involved in skeletal muscle metabolic pathways responsible for neutralizing toxic ammonia (glutamine, arginine, citrulline, ornithine), attenuating the deleterious effects of H+ ions (histidine, ß-alanine), and reducing exercise-induced protein breakdown (1- and 3-methylhistidine). Our findings suggest that sprint-oriented training supports metabolic pathways that are responsible for the removal of harmful metabolites produced during exercise.

19.
Metabolites ; 14(7)2024 Jun 23.
Artigo em Inglês | MEDLINE | ID: mdl-39057676

RESUMO

We aimed to evaluate long-term changes in proteinogenic and non-proteinogenic plasma free amino acids (PFAA). Eleven male endurance triathletes participated in a 9-month study. Blood was collected at rest, immediately after exhaustive exercise, and during 30-min recovery, in four consecutive training phases: transition, general, specific, and competition. Twenty proteinogenic and 22 non-proteinogenic PFAAs were assayed using the LC-ESI-MS/MS technique. The structured training modified the patterns of exercise-induced PFAA response, with the competition phase being the most distinct from the others. Branched-chain amino acids (p = 0.002; η2 = 0.216), phenylalanine (p = 0.015; η2 = 0.153), methionine (p = 0.002; η2 = 0.206), and lysine (p = 0.006; η2 = 0.196) declined more rapidly between rest and exhaustion in the competition phase. Glutamine (p = 0.008; η2 = 0.255), glutamate (p = 0.006; η2 = 0.265), tyrosine (p = 0.001; η2 = 0.195), cystine (p = 0.042; η2 = 0.183), and serine (p < 0.001; η2 = 0.346) levels were reduced in the competition phase. Arginine (p = 0.046; η2 = 0.138) and aspartate (p = 0.011; η2 = 0.171) levels were highest during exercise in the transition phase. During the competition phase, α-aminoadipic acid (p = 0.023; η2 = 0.145), ß-aminoisobutyric acid (p = 0.007; η2 = 0.167), ß-alanine (p < 0.001; η2 = 0.473), and sarcosine (p = 0.017; η2 = 0.150) levels increased, whereas phosphoethanolamine (p = 0.037; η2 = 0.189) and taurine (p = 0.008; η2 = 0.251) concentrations decreased. Overtraining indicators were not elevated. The altered PFAA profile suggests adaptations within energy metabolic pathways such as the tricarboxylic acid cycle, oxidative phosphorylation, ammonia neutralization, the purine nucleotide cycle, and buffering of intracellular H+ ions. The changes seem to reflect normal adaptations.

20.
PLoS One ; 19(8): e0309529, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39213376

RESUMO

Circulating blood is an important plasma free amino acids (PFAAs) reservoir and a pivotal link between metabolic pathways. No comparisons are available between athletes with opposite training adaptations that include a broader spectrum of both proteinogenic and non-proteinogenic amino acids, and that take into account skeletal muscle mass. We hypothesized that the levels of the exercise-induced PFAAs concentration are related to the type of training-related metabolic adaptation. We compared highly trained endurance athletes (n = 11) and sprinters (n = 10) aged 20‒35 years who performed incremental exercise until exhaustion. Venous blood was collected before and during the test and 30-min recovery (12 samples). Forty-two PFAAs were assayed using LC-ESI-MS/MS technique. Skeletal muscle mass was estimated using dual X-ray absorptiometry method. Glutamine and alanine were dominant PFAAs throughout the whole exercise and recovery period (~350‒650 µmol∙L-1). Total, combined proteinogenic, non-essential, and non-proteinogenic PFAAs levels were significantly higher in endurance athletes than sprinters (ANOVA group effects: p = 0.007, η2 = 0.321; p = 0.011, η2 = 0.294; p = 0.003, η2 = 0.376; p = 0.001, η2 = 0.471, respectively). The exercise response was more pronounced in endurance athletes, especially for non-proteinogenic PFAAs (ANOVA interaction effect: p = 0.038, η2 = 0.123). Significant between-group differences were observed for 19 of 33 PFAAs detected, including 4 essential, 7 non-essential, and 8 non-proteinogenic ones. We demonstrated that the PFAAs response to incremental aerobic exercise is associated with the type of training-related metabolic adaptation. A greater turnover and availability of circulating PFAAs for skeletal muscles and other body tissues is observed in endurance- than in sprint-trained individuals. Non-proteinogenic PFAAs, despite low concentrations, also respond to exercise loads, indicating their important, though less understood role in exercise metabolism. Our study provides additional insight into the exercise-induced physiological response of PFAAs, and may also provide a rationale in discussions regarding dietary amino acid requirements in high-performance athletes with respect to sports specialization.


Assuntos
Aminoácidos , Atletas , Exercício Físico , Resistência Física , Humanos , Adulto , Aminoácidos/sangue , Aminoácidos/metabolismo , Masculino , Resistência Física/fisiologia , Exercício Físico/fisiologia , Adulto Jovem , Músculo Esquelético/metabolismo , Feminino , Adaptação Fisiológica , Corrida/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA