Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
J Neurophysiol ; 119(1): 84-95, 2018 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-28978764

RESUMO

Burst firing in medial substantia nigra (mSN) dopamine (DA) neurons has been selectively linked to novelty-induced exploration behavior in mice. Burst firing in mSN DA neurons, in contrast to lateral SN DA neurons, requires functional ATP-sensitive potassium (K-ATP) channels both in vitro and in vivo. However, the precise role of K-ATP channels in promoting burst firing is unknown. We show experimentally that L-type calcium channel activity in mSN DA neurons enhances open probability of K-ATP channels. We then generate a mathematical model to study the role of Ca2+ dynamics driving K-ATP channel function in mSN DA neurons during bursting. In our model, Ca2+ influx leads to local accumulation of ADP due to Ca-ATPase activity, which in turn activates K-ATP channels. If K-ATP channel activation reaches levels sufficient to terminate spiking, rhythmic bursting occurs. The model explains the experimental observation that, in vitro, coapplication of NMDA and a selective K-ATP channel opener, NN414, is required to elicit bursting as follows. Simulated NMDA receptor activation increases the firing rate and the rate of Ca2+ influx, which increases the activation of K-ATP. The model suggests that additional sources of hyperpolarization, such as GABAergic synaptic input, are recruited in vivo for burst termination or rebound burst discharge. The model predicts that NN414 increases the sensitivity of the K-ATP channel to ADP, promoting burst firing in vitro, and that that high levels of Ca2+ buffering, as might be expected in the calbindin-positive SN DA neuron subpopulation, promote rhythmic bursting pattern, consistent with experimental observations in vivo. NEW & NOTEWORTHY Recently identified distinct subpopulations of midbrain dopamine neurons exhibit differences in their two primary activity patterns in vivo: tonic (single spike) firing and phasic bursting. This study elucidates the biophysical basis of bursts specific to dopamine neurons in the medial substantia nigra, enabled by ATP-sensitive K+ channels and necessary for novelty-induced exploration. A better understanding of how dopaminergic signaling differs between subpopulations may lead to therapeutic strategies selectively targeted to specific subpopulations.


Assuntos
Sinalização do Cálcio , Neurônios Dopaminérgicos/metabolismo , Canais KATP/metabolismo , Substância Negra/metabolismo , Potenciais de Ação , Animais , Neurônios Dopaminérgicos/fisiologia , Canais KATP/genética , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Substância Negra/citologia , Substância Negra/fisiologia
2.
J Physiol ; 591(10): 2723-45, 2013 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-23401612

RESUMO

Amyotrophic lateral sclerosis is a progressive neurodegenerative disease that targets some somatic motoneuron populations, while others, e.g. those of the oculomotor system, are spared. The pathophysiological basis of this pattern of differential vulnerability, which is preserved in a transgenic mouse model of amyotrophic lateral sclerosis (SOD1(G93A)), and the mechanism of neurodegeneration in general are unknown. Hyperexcitability and calcium dysregulation have been proposed by others on the basis of data from juvenile mice that are, however, asymptomatic. No studies have been done with symptomatic mice following disease progression to the disease endstage. Here, we developed a new brainstem slice preparation for whole-cell patch-clamp recordings and single cell fura-2 calcium imaging to study motoneurons in adult wild-type and SOD1(G93A) mice up to disease endstage. We analysed disease-stage-dependent electrophysiological properties and intracellular Ca(2+) handling of vulnerable hypoglossal motoneurons in comparison to resistant oculomotor neurons. Thereby, we identified a transient hyperexcitability in presymptomatic but not in endstage vulnerable motoneurons. Additionally, we revealed a remodelling of intracellular Ca(2+) clearance within vulnerable but not resistant motoneurons at disease endstage characterised by a reduction of uniporter-dependent mitochondrial Ca(2+) uptake and enhanced Ca(2+) extrusion across the plasma membrane. Our study challenged the notion that hyperexcitability is a direct cause of neurodegeneration in SOD1(G93A) mice, but molecularly identified a Ca(2+) clearance deficit in motoneurons and an adaptive Ca(2+) handling strategy that might be targeted by future therapeutic strategies.


Assuntos
Esclerose Lateral Amiotrófica/fisiopatologia , Cálcio/fisiologia , Neurônios Motores/fisiologia , Esclerose Lateral Amiotrófica/metabolismo , Animais , Tronco Encefálico/fisiopatologia , Modelos Animais de Doenças , Masculino , Camundongos , Camundongos Transgênicos , Mitocôndrias/fisiologia , Superóxido Dismutase/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA