RESUMO
The contribution of the surface layer to the reflection coefficients is shown to be determined by four surface integral values, which can be interpreted as real and imaginary parts of two complex permittivity excesses. The reflectance-absorbance spectra are determined by the spectra of these parameters. The spectra of the surface excess integrals cannot be found with the angular measurements of reflection-absorption spectra, which are determined by only three angular dependent terms. To determine these four surface excess integrals, it is necessary to involve the experimental data of spectroscopic ellipsometry or polarization-modulation infrared reflection absorption spectroscopy providing equivalent information about surface. In the case of weakly absorbing bulk medium, the real parts of the excesses can be neglected, permitting calculation of their imaginary parts using the angular dependence of the absorbance. The calculation of these parameters allows to check consistency of the data obtained. Measurements of the angular dependence of the absorbance of p-polarized radiation reflected from the DPPC monolayer upon distilled water were performed. The data obtained turned to be in good agreement with the proposed theoretical analysis.
RESUMO
This paper reports the results of a detailed study of the optical response of boron difluoride curcuminoids to radiation exposure. Two lines of the dyes fundamentally different in structure (namely, symmetrical and asymmetrical) were tested. If the absorption responses of their solutions in chloroform to X-rays turns out to be quite close quantitatively (note that it has a very indicative visual manifestation - a gradual discoloration is observed in the dose range up to 300 Gy), the fluorescence ones differ notably: among other things, the former demonstrate much more sensitive reactions (the corresponding limit of detection values ââdiffer by up to 2.36-fold). Nevertheless, in both parameters, these dyes generally show good linearity of the response as in classical coordinates (up to ≈ 100-150 Gy), as in semi-logarithmic ones (up to 1000 Gy). Since the main reason for such behavior seems to be the radiation-induced decomposition of the dyes, its possible scheme and corresponding "weak links" in the structure of the molecules (in other words, radiosensitive elements) are proposed for each case. For example, these include N(CH3)2 fragments at the ends of dimethylaminostyryl groups. It is precisely their detachment that determines the observed optical response of asymmetrical dyes. Thus, the results obtained provide some insight into the possibilities of controlling the sensitivity of organic dyes to irradiation by changing their structure.
RESUMO
This article discusses the design and analysis of a new chemical chemosensor for detecting mercury(II) ions. The chemosensor is a hydrazone made from 4-methylthiazole-5-carbaldehyde and fluorescein hydrazide. The structure of the chemosensor was confirmed using various methods, including nuclear magnetic resonance spectroscopy, infrared spectroscopy with Fourier transformation, mass spectroscopy, and quantum chemical calculations. The sensor's ability in the highly selective and sensitive discovery of Hg2+ ions in water was demonstrated. The detection limit for mercury(II) ions was determined to be 0.23 µM. The new chemosensor was also used to detect Hg2+ ions in real samples and living cells using fluorescence spectroscopy. Chemosensor 1 and its complex with Hg2+ demonstrate a significant tendency to enter and accumulate in cells even at very low concentrations.
Assuntos
Mercúrio , Metais Pesados , Poluentes Químicos da Água , Fluoresceína , Água , Corantes Fluorescentes/química , Poluentes Químicos da Água/análise , Mercúrio/análise , Espectrometria de Fluorescência/métodosRESUMO
Optically active liquid-crystalline dispersions (LCD) of nucleic acids, obtained by polymer- and salt-induced (psi-) condensation, e.g., by mixing of aqueous saline solutions of low molecular weight DNA (≤106 Da) and polyethylene glycol (PEG), possess an outstanding circular dichroism (CD) signal (so-called psi-CD) and are of interest for sensor applications. Typically, such CD signals are observed in PEG content from ≈12.5% to ≈22%. However, in the literature, there are very conflicting data on the existence of psi-CD in DNA LCDs at a higher content of crowding polymer up to 30-40%. In the present work, we demonstrate that, in the range of PEG content in the system above ≈24%, optically polymorphic LCDs can be formed, characterized by both negative and positive psi-CD signals, as well as by ones rather slightly differing from the spectrum of isotropic DNA solution. Such a change in the CD signal is determined by the concentration of the stock solution of PEG used for the preparation of LCDs. We assume that various saturation of polymer chains with water molecules may affect the amount of active water, which in turn leads to a change in the hydration of DNA molecules and their transition from B-form to Z-form.
Assuntos
DNA , Polímeros , Polímeros/química , Conformação de Ácido Nucleico , DNA/química , Polietilenoglicóis/química , Dicroísmo Circular , ÁguaRESUMO
The efficacy of photodynamic therapy (PDT) strictly depends on the availability of molecular oxygen to trigger the light-induced generation of reactive species. Fluorocarbons have an increased ability to dissolve oxygen and are attractive tools for gas delivery. We synthesized three fluorous derivatives of chlorin with peripheral polyfluoroalkyl substituents. These compounds were used as precursors for preparing nanoemulsions with perfluorodecalin as an oxygen depot. Therefore, our formulations contained hydrophobic photosensitizers capable of absorbing monochromatic light in the long wavelength region and the oxygen carrier. These modifications did not alter the photosensitizing characteristics of chlorin such as the generation of singlet oxygen, the major cytocidal species in PDT. Emulsions readily entered HCT116 colon carcinoma cells and accumulated largely in mitochondria. Illumination of cells loaded with emulsions rapidly caused peroxidation of lipids and the loss of the plasma membrane integrity (photonecrosis). Most importantly, in PDT settings, emulsions potently sensitized cells cultured under prolonged (8 weeks) hypoxia as well as cells after oxygen depletion with sodium sulfite (acute hypoxia). The photodamaging potency of emulsions in hypoxia was significantly more pronounced compared to emulsion-free counterparts. Considering a negligible dark cytotoxicity, our materials emerge as efficient and biocompatible instruments for PDT-assisted eradication of hypoxic cells.
Assuntos
Fluorocarbonos , Fotoquimioterapia , Porfirinas , Humanos , Fármacos Fotossensibilizantes/química , Porfirinas/química , Fluorocarbonos/farmacologia , Hipóxia/metabolismo , Oxigênio , Emulsões/química , Linhagem Celular TumoralRESUMO
A novel amphiphilic cationic chlorin e6 derivative was investigated as a promising photosensitizer for photodynamic therapy. Two cationic -N(CH3)3+ groups on the periphery of the macrocycle provide additional hydrophilization of the molecule and ensure its electrostatic binding to the mitochondrial membranes and bacterial cell walls. The presence of a hydrophobic phytol residue in the same molecule results in its increased affinity towards the phospholipid membranes while decreasing its stability towards aggregation in aqueous media. In organic media, this chlorin e6 derivative is characterized by a singlet oxygen quantum yield of 55%. Solubilization studies in different polymer- and surfactant-based supramolecular systems revealed the effective stabilization of this compound in a photoactive monomolecular form in micellar nonionic surfactant solutions, including Tween-80 and Cremophor EL. A novel cationic chlorin e6 derivative also demonstrates effective binding towards serum albumin, which enhances its bioavailability and promotes effective accumulation within the target tissues. Laser confocal scanning microscopy demonstrates the rapid intracellular accumulation and distribution of this compound throughout the cells. Together with low dark toxicity and a rather good photostability, this compound demonstrates significant phototoxicity against HeLa cells causing cellular damage most likely through reactive oxygen species generation. These results demonstrate a high potential of this derivative for application in photodynamic therapy.
Assuntos
Clorofilídeos , Fotoquimioterapia , Porfirinas , Humanos , Fármacos Fotossensibilizantes/farmacologia , Fármacos Fotossensibilizantes/química , Células HeLa , Fotoquimioterapia/métodos , Porfirinas/farmacologia , Porfirinas/químicaRESUMO
2,4,6-Trichloro-1,3,5-triazine (cyanuric chloride) is an excellent coupling reagent for the preparation of highly structured multifunctional molecules. Three component systems based on porphyrin, cyanuric chloride and carborane clusters were prepared by a one-pot stepwise amination of cyanuric chloride with 5-(4-aminophenyl)-10,15,20-triphenylporphyrin, followed by replacement of the remaining chlorine atoms with carborane S- or N-nucleophiles. Some variants of 1,3,5-triazine derivatives containing porphyrin, carborane and residues of biologically active compounds such as maleimide, glycine methyl ester as well as thioglycolic acid, mercaptoethanol and hexafluoroisopropanol were also prepared. A careful control of the reaction temperature during the substitution reactions will allow the synthesis of desired compounds in a good to high yields. The structures of synthesized compounds were determined with UV-vis, IR, 1H NMR, 11B NMR, MALDI-TOF or LC-MS spectroscopic data. The dark and photocytotoxicity as well as intracellular localization and photoinduced cell death for compounds 8, 9, 17, 18 and 24 were evaluated.
Assuntos
Boranos , Porfirinas , Cloro , Espectroscopia de Ressonância Magnética , Maleimidas , Mercaptoetanol , Estrutura Molecular , Porfirinas/química , Triazinas/químicaRESUMO
The absorbance studies of the optical radiation reflection from the boundary of two soft-matter media with a thin monolayer between are performed for a number of angles of incidence. The reflectance and absorbance spectra are described in terms of a unique spectrum invariant with respect to the incidence angles. The angular dependence of the absorbance for s-polarized radiation is shown to not provide any extra information as compared with a single-angle study in line with the previously developed theoretical considerations. We verify it experimentally performing the multi-angle infrared reflection-absorption spectroscopy measurements at the air-water interface with a thin lipid film.
RESUMO
A series of pyridyl (pyridinium) substituted benzoxazoles were studied by steady state absorption, fluorescence spectroscopy, time-resolved fluorescence spectroscopy, fs pulse absorption and polarization spectroscopy, and quantum-chemical calculations. The spectral and kinetic parameters of the fluorophores in MeCN and EtOAc were obtained experimentally and were calculated by means of DFT and TDDFT methods. A scheme including four transient excited states was proposed for the interpretation of differential absorption kinetics of the charged fluorophores. Expressions describing the actual kinetics graphs, the decay associated spectra, and the species-associated spectra were derived. The charge shift step was found to be dependent on average solvation times. A charge shift followed by the formation of the twisted conformer was found for the excited 1-ethyl-3-(5-phenyloxazol-2-yl)pyridinium 4-methyl-1-benzenesulfonate in MeCN and EtOAc. Conformational analysis confirms a large amplitude motion of the meta-substituted ethylpyridinium group as an additional structural relaxation path producing an abnormally large fluorescence Stokes shift.
RESUMO
Lipofuscin granules accumulate in the retinal pigment epithelium (RPE) with age, especially in patients with visual diseases, including progressive age-related macular degeneration (AMD). Bisretinoids and their photooxidation and photodegradation products are major sources of lipofuscin granule fluorescence. The present study focused on examining the fluorescence decay characteristics of bisretinoid photooxidation and photodegradation products to evaluate the connection between fluorescence lifetime and spectral characteristics of target fluorophore groups. The primary objective of the study was to apply experimental spectral analysis results of lipofuscin granule fluorescence properties to interpretation of fluorescence lifetime imaging ophthalmoscopy data. Fluorescence analysis of the lipofuscin granule fluorophores in RPE collected from cadaver eyes was performed. The fluorescence lifetimes were measured by picosecond-resolved time correlated single photon counting technique. A global analytical method was applied to analyze data sets. The photooxidation and photodegradation products of bisretinoids exhibited a longer fluorescence lifetime (average value approximately 6 ns) and a shorter wavelength maximum (530-580 nm). Further, these products significantly contributed (more than 30%), to total fluorescence compared to the other fluorophores in lipofuscin granules. Thus, the contribution of oxidized lipofuscin bisretinoids to autofluorescence decay kinetics is an important characteristic for fluorescence lifetime imaging microscopy data analysis. The higher average fluorescence lifetime in AMD eyes was likely due to the higher abundance of oxidized bisretinoids compared with non-oxidized bisretinoids. Because higher level of oxidized bisretinoids is indicative of pathological processes in the retina and RPE, the present findings have the potential to improve fluorescence lifetime imaging approaches for early diagnosis of degenerative processes in the retina and RPE.
Assuntos
Fluorescência , Corantes Fluorescentes/química , Lipofuscina/química , Epitélio Pigmentado da Retina/química , Adolescente , Adulto , Idoso , Humanos , Pessoa de Meia-Idade , Espectrometria de Fluorescência , Adulto JovemRESUMO
Complexes of photosensitizers with blood proteins play an essential role in their delivery to the cell, as well as in the efficacy of photodynamic therapy. Biscarbocyanine dye non-covalently binds human serum albumin (HSA), the dissociation constant of the dye with albumin being Kd = (1.7 ± 0.1) × 10-5 M. According to time correlated single photon counting (TCSPC) fluorescence lifetime spectroscopy data, two types of complexes with lifetimes of 1.0 ns and 2.5 ns are formed between the dye and HSA. Confocal fluorescence microscopy has unambiguously shown the penetration of biscarbocyanine into endoplasmic reticulum, lysosomes, mitochondria and nuclei of the cells. The dye demonstrates photocytotoxicity towards the colon carcinoma HCT116 cells with IC50 = 0.3 µM. Hydrophobicity of the polymethine chain and the presence of two positive charges on the dye molecule contribute to the effective binding of the dye with HSA and the penetration into cells. These facts allow considering the biscarbocyanine dye as a promising agent for the photodynamic therapy of cancer.
Assuntos
Carbocianinas/química , Corantes Fluorescentes/química , Albumina Sérica/química , Carbocianinas/metabolismo , Carbocianinas/farmacologia , Núcleo Celular/metabolismo , Sobrevivência Celular/efeitos dos fármacos , Retículo Endoplasmático/metabolismo , Corantes Fluorescentes/metabolismo , Células HCT116 , Humanos , Lisossomos/metabolismo , Ligação Proteica , Albumina Sérica/metabolismoRESUMO
BACKGROUND: The study of acridine orange (AO) spectral characteristics and the quenching of its singlet and triplet excited states by TEMPO radical at its binding to DNA in the function of the DNA concentration and in the absence and presence of NaCl is reported. METHODS: The study was performed using steady-state and time resolved optical absorption and florescence, fluorescence correlation spectroscopy and resonant light scattering techniques. RESULTS: The presence of different species in equilibrium: AO monomers and aggregates bound to DNA, has been demonstrated, their relative content depending on the DNA and the AO concentrations. At high DNA concentration the AO monomers are protected against the contact with other molecules, thus reducing the AO excited state quenching. The addition of NaCl reduces the AO binding constant to DNA, thus reducing the AO and DNA aggregation. CONCLUSIONS: The interaction of AO with DNA is a complex process, including aggregation and disaggregation of both components. This modifies the AO excited state characteristics and AO accessibility to other molecules. The salt reduces the DNA effects on the AO excited state characteristics thus attenuating its effects on the AO efficacy in applications. GENERAL SIGNIFICANCE: This study demonstrates that the interaction of photosensitizers with DNA, depending on their relative concentrations, can both decrease and increase the photosensitizer efficacy in applications. The salt is able to attenuate these effects.
Assuntos
Laranja de Acridina/química , DNA/química , Concentração Osmolar , Cloreto de Sódio/química , Espectrometria de Fluorescência/métodosRESUMO
Novel hetarylazo dyes containing tetrazole and tetra- or dihydroquinoline moieties were synthesized and their spectral properties in solvents of different polarities and H-bonding abilities were examined. The dyes exhibit solvatochromism dramatically depending on the proton accepting ability of solvents: (DMSO > H2O > MeOH > ACN > CH2Cl2) and the dye concentration. Upon dilution the absorption maximum of the visible band shows a blue shift and the absorption coefficient of the maximum decreases. This was accounted for by complex formation either between the dye molecules or between the dye and solvent molecules. The H-bond with partial proton transfer is formed between the acidic NH group of the tetrazole moiety of a dye molecule and the basic NH group of the hydroquinoline moiety of the other dye molecule or with a solvent with proton accepting ability. Upon dilution the equilibrium shifts to the complex with a solvent. The coexistence of several forms of the dye molecules with different absorption spectra was demonstrated in pulse photolysis upon excitation by light with different wavelengths. Three forms of cis-isomers were registered. The photogenerated cis-isomers decay with lifetimes from 200 µs to 5 ms. The fast cis-trans dark isomerization determines the photostability of the dyes.
Assuntos
Corantes/química , Fotoquímica , Quinolinas/química , Tetrazóis/química , Isomerismo , SolventesRESUMO
The spectral characteristics, binding constants with bovine (BSA) and human serum albumin (HSA) and lifetimes of fluorescence in PBS and EtOH solutions and in the presence of BSA in PBS were measured for novel indotricarbocyanine dyes bearing remote phosphonate groups. These parameters are close to those for indocyanine green (ICG) indicating that the Coulomb interaction does not play a significant role in complex formation, and the binding is determined by the interaction of the dye polymethine chain with albumin. The fluorescence lifetimes of the complexes with BSA strongly indicate the formation of complexes of two types with different lifetimes. The complex with a longer fluorescence lifetime (740-800 ps) and major contribution (up to 88%) is bound to the more hydrophobic site and that with a shorter fluorescence lifetime (300-340 ps) to the more hydrophilic site.
Assuntos
Corantes/química , Corantes/metabolismo , Organofosfonatos/química , Organofosfonatos/metabolismo , Albumina Sérica/química , Albumina Sérica/metabolismo , Animais , Sítios de Ligação , Humanos , Ligação Proteica , Soroalbumina Bovina/química , Soroalbumina Bovina/metabolismo , Espectrometria de FluorescênciaRESUMO
This letter introduces the pre-steady-state kinetic approach, which is traditional for evaluation of elementary constants in molecular (enzyme) catalysis, for nanozymes. Apparently, the most active peroxidase-mimicking nanozyme based on catalytically synthesized Prussian Blue nanoparticles has been chosen. The elementary constants (k1) for the nanozymes' reduction by an electron-donor substrate (being the fastest stage according to steady-state kinetic data) have been determined by means of stopped-flow spectroscopy. These constants have been found to be dependent on both the size of the nanozyme and the reducing substrate redox potential. For the smallest nanozymes (32 nm in diameter), log(k1) linearly decays with an increase of the substrate redox potential (cotangent value ≈125 mV). On the contrary, for the largest nanozymes with a diameter above 150 nm, k1 is almost independent of it. Moreover, for the substrate with the lowest redox potential (K4[Fe(CN)6]), the rate constant under discussion (k1) is almost independent of the nanozymes' size. Perhaps, the rate of the intrananozyme electron transfer causing bleaching becomes comparative or even lower than that of the nanoparticle interaction with the fastest substrate. Anyway, the elementary constant of nanozyme reduction with potassium ferrocyanide (k1) reaches the value of 1 × 1010 M-1 s-1, which is 3-4 orders of magnitude faster than for enzymes peroxidases. The obtained results obviously demonstrate that the pre-steady-state kinetic approach is able to discover novel advantages of nanozymes from both fundamental and practical points of view.
Assuntos
Ferrocianetos , Oxirredução , Ferrocianetos/química , Cinética , Peroxidase/química , Peroxidase/metabolismo , Nanopartículas/química , CatáliseRESUMO
This paper reports synthesis and characterization of three new coumarin-fused NIR BODIPY dyes 16-18, as well as the detailed study of their optical response to exposure with X-rays (up to 1000 Gy) in solvents of various nature. A strong reaction to irradiation (both in terms of absorption and fluorescence changing) is found in chlorinated solvents (CCl4 and CHCl3) and acetonitrile, while no significant respond of the dyes is observed in toluene and propanol-1. Herewith, their responses turned out to be very versatile: a complex change in fluorescence (quenching of the main band accompanied by the flare-up in a new spectral region) is observed together with colorimetric reaction (e.g., the color of 17 changes from green to blue at 50-80 Gy, and then becomes pink closer to ≈350 Gy). In general, the dyes show good linearity in their response to irradiation up to ≈70-100 Gy and are quite sensitive. For example, the limit of detection (LOD) values for 18 are from 0.29 to 6.73. At the same time, the ratiometric fluorescent response of the compound 16 turns out to be linear over the entire range up to 1000 Gy (to date, this is the first BODIPY-based X-ray probe with optical response over such a wide dose range). Thus, the synthesized dyes seem to be promising for dosimetric support of radiation processing/sterilization procedures.
RESUMO
Light-induced release of cisplatin from Pt(IV) prodrugs represents a promising approach for precise control over the antiproliferative activity of Pt-based chemotherapeutic drugs. This method has the potential to overcome crucial drawbacks of conventional cisplatin therapy, such as high general toxicity toward healthy organs and tissues. Herein, we report two Pt(IV) prodrugs with BODIPY-based photoactive ligands Pt-1 and Pt-2, which were designed using carbamate and triazole linkers, respectively. Both prodrugs demonstrated the ability to release cisplatin under blue light irradiation without the requirement of an external reducing agent. Dicarboxylated Pt-2 prodrug turned out to be more stable in the dark and more sensitive to light than its monocarbamate Pt-1 counterpart; these observations were explained using DFT calculations. The investigation of the photoreduction mechanism of Pt-1 and Pt-2 prodrugs using DFT modeling and ΔG0 PET estimation suggests that the photoinduced electron transfer from the singlet excited state of the BODIPY axial ligand to the Pt(IV) center is the key step in the light-induced release of cisplatin from the complexes. Cytotoxicity studies demonstrated that both prodrugs were nontoxic in the dark and toxic to MCF-7 cells under low-dose irradiation with blue light, and the observed effect was solely due to the cisplatin release from the Pt(IV) prodrugs. Our research presents an elegant synthetic approach to light-activated Pt(IV) prodrugs and presents findings that may contribute to the future rational design of photoactivatable Pt(IV) prodrugs.
Assuntos
Antineoplásicos , Ensaios de Seleção de Medicamentos Antitumorais , Luz , Pró-Fármacos , Pró-Fármacos/química , Pró-Fármacos/farmacologia , Pró-Fármacos/síntese química , Humanos , Antineoplásicos/química , Antineoplásicos/farmacologia , Antineoplásicos/síntese química , Estrutura Molecular , Teste de Materiais , Materiais Biocompatíveis/química , Materiais Biocompatíveis/farmacologia , Materiais Biocompatíveis/síntese química , Sobrevivência Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Cisplatino/farmacologia , Cisplatino/química , Tamanho da Partícula , Compostos de Boro/química , Compostos de Boro/farmacologia , Compostos de Boro/síntese química , Processos Fotoquímicos , Teoria da Densidade FuncionalRESUMO
In this study, we described physico-chemical properties of novel nanoformulation of photosensitizer-pyropheophorbide α 17-diethylene glycol ester (XL) (chlorophyll α derivative), revealing insights into antitumor activity and maintaining quality, meeting the pharmaceutical approach of new nanoformulation design. Our formulation, based on poly(lactic-co-glycolic acid) (PLGA) nanoparticles, increased XL solubility and selective tumor-targeted accumulation. In our research, we revealed, for the first time, that XL binding to polyvinyl alcohol (PVA) enhances XL photophysical activity, providing the rationale for PVA application as a stabilizer for nanoformulations. Results of FTIR, DSC, and XRD revealed the physical interactions between XL and excipients, including PVA, indicating that the encapsulation maintained XL binding to PVA. The encapsulated XL exhibited higher photophysical activity compared to non-encapsulated substance, which can be attributed to the influence of residual PVA. Gamma-irradiation led to degradation of XL; however, successful sterilization of the samples was achieved through the filtration. Importantly, the encapsulated and sterilized XL retained cytotoxicity against both 2D and 3D tumor cell models, demonstrating the potential of the formulated NP-XL for photodynamic therapy applications, but lacked the ability to reactivate epigenetically silenced genes. These findings provide valuable insights into the design and characterization of PLGA-based nanoparticles for the encapsulation of photosensitizers.
RESUMO
Pyridoxal-5'-phosphate-(PLP-) dependent D-amino acid transaminases (DAATs) catalyze stereoselective reversible transfer of the amino group between D-amino acids and keto acids. In vivo DAATs are commonly known to synthesize D-glutamate for cell wall peptidoglycans. Today DAATs meet increasing attention for application in the synthesis of D-amino acids, whereas little is known about the mechanism of substrate recognition and catalytic steps of the D-amino acids conversion by DAATs. In this work, the pre-steady-state kinetics of the half-reactions of DAAT from Haliscomenobacter hydrossis with D-glutamate, D-alanine, D-leucine, and D-phenylalanine was examined at two wavelengths, 416 and 330 nm, using a stopped-flow technique. Monophasic kinetics was observed with specific substrates D-glutamate and D-alanine, whereas half-reactions with D-leucine and D-phenylalanine exhibited biphasic kinetics. All half-reactions proceeded until the complete conversion of PLP due to the release of the pyridoxamine-5'-phosphate form of cofactor from the holoenzyme . Comparison of kinetic parameters of half-reactions and the overall transamination reactions for D-leucine, D-phenylalanine revealed the increase in the rates of deamination of these substrates in the overall reaction with α-ketoglutarate. In the overall transamination reaction, the catalytic turnover rates for D-leucine and D-phenylalanine increased by 260 and 60 times, correspondingly, comparing with the slowest step rate constants in the half-reactions. We suggested the activating effect by a specific substrate α-ketoglutarate in the overall transamination reaction. The study of half-reactions helped to quantify the specificity of DAAT from H. hydrossis for D-amino acids with different properties. The results obtained are the first detailed analysis of half-reactions catalyzed by DAAT.
Assuntos
Aminoácidos , Transaminases , Transaminases/química , Ácido Glutâmico , Leucina , Ácidos Cetoglutáricos , Alanina , Fosfato de Piridoxal/química , Fenilalanina , Catálise , FosfatosRESUMO
Curcuminoids of boron difluoride, 1-aryl(hetaryl)-5-phenylpenta-2,4-dien-1-onates of boron difluoride, have been synthesized. A comparative study of the electronic structure, luminescent properties and their potential for applications in bio-imaging has been carried out. The influence of the electronic structure of α-substituents on the luminescence of compounds was studied by the methods of stationary and time-resolved luminescence spectroscopy and DFT modeling. The introduction of π-donor substituents leads to a noticeable bathochromic shift and an increase in the Stokes shift in the luminescence spectra. On going from σ-donor substituents in the phenyl ring to π-donor substituents, the luminescence quantum yield increases from 0.03 to 0.22. The maximum Stokes shift and high quantum yield of luminescence is exhibited by the complex with a stilbene substituent, which has the longest π-system and the maximum efficiency of charge transfer. Dyes are able to penetrate into the cells of the model cell line and accumulate, moreover, accumulation occurs mainly in the cytoplasm of cells. The compounds penetrate into the cells by 12 h of incubation without damaging it's structure and without causing rapid cell death. The submicromolar range of non-toxic concentrations during long-term incubation for a model cell line was determined, which is a characteristic of fluorescent imaging. Due to uniform distribution in the cytoplasm of cells dye with naphtyl substituent is promising for visualization of the cell cytoplasm. This leader compound has the lowest cytotoxicity for cells from the synthesized series of dyes, which makes it promising for further studies as a fluorescent imaging agent. The leader compound has the lowest cytotoxicity for cells from the synthesized series of dyes, which makes it promising for further studies as a fluorescent imaging agent.