RESUMO
Toxoplasma gondii are intracellular protozoa that can cause neurological disease or death in fetuses and even in immunocompromised human adults. Ticks are recognized as vectors of many microorganisms including viruses, bacteria, and protozoa. Recent studies detected T. gondii in various tick species in many countries. In this study, we performed PCR detection of the T. gondii B1 gene from Haemaphysalis ticks collected from vegetation in 4 localities, Wonju, Gunsan, Miryang, and Yangsan, in Korea. We analyzed DNA from 314 ticks (268 Haemaphysalis longicornis and 46 Haemaphysalis flava) and the B1 gene of T. gondii was detected in 13 of these. The detection of T. gondii in ticks differed significantly by region (P=0.021). T. gondii was detected in the following percentages of collected ticks: 3.7% (7 of 189) in Gunsan, 10% (5 of 50) in Wonju, 16.7% (1 of 6) in Yangsan, and 0% (0 of 69) in Miryang. The detection of T. gondii in ticks was not associated with tick species or development stage. This is the first report of T. gondii detection in ticks in Korea. Our results provide important information necessary to understand toxoplasmosis transmission.
Assuntos
Carrapatos/parasitologia , Toxoplasma/genética , Toxoplasma/isolamento & purificação , Animais , Vetores Aracnídeos , Reação em Cadeia da Polimerase , República da Coreia , Toxoplasmose/transmissãoRESUMO
This study was aimed to disclose the prevalence rate of tick-borne pathogens from ticks collected from cattle and wild animals in Tanzania in 2012. Ticks were collected from slaughtered cattle and dead wild animals from November 5 to December 23, 2012 and identified. PCR for detecting Anaplasmataceae, Piroplamidae, Rickettsiaceae, Borrelia spp., and Coxiella spp. were done. Among those tested, Rickettsiaceae, Piroplasmidae, and Anaplasmataceae, were detected in ticks from the 2 regions. Rickettsiaceae represented the major tick-borne pathogens of the 2 regions. Ticks from animals in Maswa were associated with a higher pathogen detection rate compared to that in ticks from Iringa. In addition, a higher pathogen detection rate was observed in ticks infesting cattle than in ticks infesting wild animals. All examined ticks of the genus Amblyomma were infected with diverse pathogens. Ticks of the genera Rhipicephalus and Hyalomma were infected with 1 or 2 pathogens. Collectively, this study provides important information regarding differences in pathogen status among various regions, hosts, and tick species in Tanzania. Results in this study will affect the programs to prevent tick-borne diseases (TBD) of humans and livestock in Tanzania.
Assuntos
Anaplasma/patogenicidade , Animais Selvagens/parasitologia , Borrelia/patogenicidade , Doenças dos Bovinos/etiologia , Bovinos/parasitologia , Coxiella/patogenicidade , Piroplasmida/patogenicidade , Rickettsiaceae/patogenicidade , Doenças Transmitidas por Carrapatos/etiologia , Doenças Transmitidas por Carrapatos/veterinária , Carrapatos/microbiologia , Carrapatos/parasitologia , Anaplasma/isolamento & purificação , Animais , Borrelia/isolamento & purificação , Doenças dos Bovinos/epidemiologia , Doenças dos Bovinos/parasitologia , Coxiella/isolamento & purificação , Piroplasmida/isolamento & purificação , Prevalência , Rickettsiaceae/isolamento & purificação , Tanzânia/epidemiologia , Doenças Transmitidas por Carrapatos/epidemiologia , Doenças Transmitidas por Carrapatos/parasitologia , Fatores de TempoRESUMO
Ticks and tick-borne diseases are important in human and livestock health worldwide. In November 2012, ixodid ticks were collected and identified morphologically from cattle and wild animals in the Maswa district and Iringa urban, Tanzania. Amblyomma gemma, A. lepidum, and A. variegatum were identified from Maswa cattle, and A. variegatum was the predominant species. A. marmoreum, Hyalomma impeltatum, and Rhipicephalus pulchellus were identified from Iringa cattle in addition to the above 3 Amblyomma species, and A. gemma was the most abundant species. Total 4 Amblyomma and 6 Rhipicephalus species were identified from wild animals of the 2 areas. A. lepidum was predominant in Maswa buffaloes, whereas A. gemma was predominant in Iringa buffaloes. Overall, A. variegatum in cattle was predominant in the Maswa district and A. gemma was predominant in Iringa, Tanzania.
Assuntos
Doenças dos Bovinos/parasitologia , Ixodidae , Infestações por Carrapato/veterinária , Animais , Animais Selvagens , Bovinos , Doenças dos Bovinos/epidemiologia , Tanzânia/epidemiologia , Infestações por Carrapato/epidemiologiaRESUMO
Exposure to storage mite (SM) and house dust mite (HDM) allergens is a risk factor for sensitization and asthma development; however, the related immune responses and their pathology have not been fully investigated. The HDMs Dermatophagoides farinae and Dermatophagoides pteronyssinus and SM Tyrophagus putrescentiae are potent allergens that induce asthma. Most SM-related studies have focused on the allergic reactions of individuals by measuring their immunoglobulin (Ig)E expression. Considering the limited research on this topic, the present study aims to investigate the differences in the immune responses induced by HDMs and SMs and histologically analyze lung tissues in a mouse asthma model to understand the differential effects of HDM and SM. The results revealed that all mite species induced airway inflammation. Mice challenged with T. putrescentiae had the highest airway resistance and total cell, eosinophil, and neutrophil counts in the bronchoalveolar lavage fluid (BALF). The SM-sensitized groups showed more severe lesions and mucus hypersecretions than the HDM-sensitized groups. Although the degree of HDM and SM exposure was the same, the damage to the respiratory lung tissue was more severe in SM-exposed mice, which resulted in excessive mucin secretion and increased fibrosis. Furthermore, these findings suggest that SM sensitization induces a more significant hypersensitivity response in mucosal immunity than HDM sensitization in asthma models.
Assuntos
Asma , Pulmão , Pyroglyphidae , Animais , Camundongos , Pyroglyphidae/imunologia , Pulmão/imunologia , Pulmão/patologia , Asma/imunologia , Asma/patologia , Feminino , Pneumonia/imunologia , Pneumonia/patologia , Líquido da Lavagem Broncoalveolar/imunologia , Líquido da Lavagem Broncoalveolar/citologia , Modelos Animais de Doenças , Camundongos Endogâmicos BALB C , Acaridae/imunologia , Alérgenos/imunologia , Eosinófilos/imunologia , Eosinófilos/patologiaRESUMO
Clonorchis sinensis infection elicits hepatic inflammation, which can lead to cholangitis, periductal hepatic fibrosis, liver cirrhosis, and even cholangiocarcinoma. Hepatic macrophages are an intrinsic element of both innate and acquired immunity. This study was conducted to demonstrate the dynamics of hepatic macrophage polarization during C. sinensis infection in mice and to identify factors regulating this polarization. Treatment of hepatic macrophages isolated from normal mice with C. sinensis excretory/secretory products (ESPs) resulted in the preferential generation of classically activated hepatic macrophages (M1 macrophages) and the production of pro-inflammatory cytokines. Additionally, cells stimulated with C. sinensis ESPs exhibited changes in cellular morphology. During the early stages of C. sinensis infection, hepatic macrophages preferentially differentiated into M1 macrophages; however, during the C. sinensis mature worm stage, when eggs are released, there were significant increases in the abundance of both M1 macrophages and alternatively activated hepatic macrophages (M2 macrophages). Moreover, there was a further increase in the M2 macrophage count during the fibrotic and cirrhotic stage of infection. Notably, this fibrotic and cirrhotic stage promoted a strong increase in the proportion of Arg-1-producing macrophages (M2 phenotype), which were associated with fibrosis and tissue repair in the liver. Our results suggest that the dynamic polarization of hepatic macrophages as C. sinensis infection progresses is related to the histological lesions present in liver tissue. Hepatic macrophages thus play an important role in local immunity during C. sinensis infection.