Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Mol Pharm ; 12(6): 2112-25, 2015 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-25881668

RESUMO

Oleanolic acid (OA) is a natural triterpenoid with anticancer properties, but its hydrophobic nature and poor aqueous solubility pose challenges in pharmaceutical formulation development. The present study aimed at developing OA-loaded mPEG-PLGA or mPEG-PLA nanoparticles (NPs) to improve the delivery of OA. The NPs were prepared by nanoprecipitation, and their physicochemical properties were characterized. The OA encapsulation efficiency of the NPs was between 40 and 75%. The size of the OA-loaded NPs was around 200-250 nm, which fell within the range required for tumor targeting by means of the enhanced permeability and retention (EPR) effect, and the negatively charged NPs remained physically stable for over 20 weeks with no aggregation observed. The OA-loaded NPs produced significant cytotoxic effects through apoptosis in cancer cell lines. Overall, the OA-loaded mPEG-PLGA NPs and mPEG-PLA NPs shared similar physicochemical properties. The former, especially the OA-loaded mPEG-P(D,L)LGA NPs, were more cytotoxic to cancer cells and therefore were more efficient for OA delivery.


Assuntos
Ácido Láctico/química , Nanopartículas/química , Ácido Oleanólico/química , Ácido Poliglicólico/química , Apoptose/efeitos dos fármacos , Linhagem Celular , Portadores de Fármacos , Células Hep G2 , Humanos , Espectroscopia de Ressonância Magnética , Neoplasias , Ácido Oleanólico/farmacologia , Copolímero de Ácido Poliláctico e Ácido Poliglicólico
2.
Mol Pharm ; 12(3): 910-21, 2015 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-25599953

RESUMO

Pulmonary delivery of siRNA has considerable therapeutic potential for treating viral respiratory infectious diseases including influenza. By introducing siRNA that targets the conserved region of viral genes encoding nucleocapsid protein (NP), viral mRNAs can be degraded and viral replication can be inhibited in mammalian cells. To enable siRNA to be used as an antiviral agent, the nucleic acid delivery barrier must be overcome. Effective local delivery of siRNA to lung tissues is required to reduce the therapeutic dose and minimize systemic adverse effects. To develop a formulation suited for clinical application, complexes of pH-responsive peptides, containing either histidine or 2,3-diaminopropionic acid (Dap), and siRNA were prepared into dry powders by spray drying with mannitol, which was used as a bulking agent. The spray-dried (SD) powders were characterized and found to be suitable for inhalation with good stability, preserving the integrity of the siRNA as well as the biological and antiviral activities. The formulations mediated highly effective in vitro delivery of antiviral siRNA into mammalian lung epithelial cells, leading to significant inhibition of viral replication when the transfected cells were subsequently challenged with H1N1 influenza virus. SD siRNA powders containing pH-responsive peptides are a promising inhalable formulation to deliver antiviral siRNA against influenza and are readily adapted for the treatment of other respiratory diseases.


Assuntos
Antivirais/administração & dosagem , Vírus da Influenza A Subtipo H1N1/efeitos dos fármacos , Vírus da Influenza A Subtipo H1N1/genética , RNA Interferente Pequeno/administração & dosagem , Administração por Inalação , Sequência de Aminoácidos , Peptídeos Catiônicos Antimicrobianos/administração & dosagem , Peptídeos Catiônicos Antimicrobianos/química , Sequência de Bases , Biofarmácia , Linhagem Celular , Química Farmacêutica , Sistemas de Liberação de Medicamentos , Inaladores de Pó Seco , Inativação Gênica , Humanos , Concentração de Íons de Hidrogênio , Influenza Humana/terapia , Microscopia Eletrônica de Varredura , Dados de Sequência Molecular , Tamanho da Partícula , Peptídeos/administração & dosagem , Peptídeos/química , Pós , RNA Interferente Pequeno/genética
3.
Pharmaceutics ; 13(12)2021 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-34959328

RESUMO

Multi-drug-resistant tuberculosis (MDR-TB) is a huge public health problem. The treatment regimen of MDR-TB requires prolonged chemotherapy with multiple drugs including second-line anti-TB agents associated with severe adverse effects. Capreomycin, a polypeptide antibiotic, is the first choice of second-line anti-TB drugs in MDR-TB therapy. It requires repeated intramuscular or intravenous administration five times per week. Pulmonary drug delivery is non-invasive with the advantages of local targeting and reduced risk of systemic toxicity. In this study, inhaled dry powder formulation of capreomycin targeting the lung was developed using spray drying technique. Among the 16 formulations designed, the one containing 25% capreomycin (w/w) and spray-dried at an inlet temperature of 90 °C showed the best overall performance with the mass median aerodynamic diameter (MMAD) of 3.38 µm and a fine particle fraction (FPF) of around 65%. In the pharmacokinetic study in mice, drug concentration in the lungs was approximately 8-fold higher than the minimum inhibitory concentration (MIC) (1.25 to 2.5 µg/mL) for at least 24 h following intratracheal administration (20 mg/kg). Compared to intravenous injection, inhaled capreomycin showed significantly higher area under the curve, slower clearance and longer mean residence time in both the lungs and plasma.

4.
Int J Pharm ; 582: 119311, 2020 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-32278054

RESUMO

A volume-based Monte Carlo simulation describing the distribution of polydisperse particles aerosolized in polydisperse droplets was developed. The algorithm addressed some major limitations found in previous models, particularly when the assumptions of the Poisson distribution, a parametric distribution frequently employed to describe the distribution process both deterministically and stochastically, may be less justified. A total of 144 simulations were conducted over combinations of four formulation factors, namely, the suspension concentration c, the ratio of the mass median diameter of the droplets to that of the particles R, and the geometric standard deviation of the droplet σd and that of the particle σp. Using the current algorithm, we found good agreements between simulated results and those from previous studies. The composition uniformity of the resultant clusters was improved with increasing c and/or R, and decreasing σp and σd. The exhaustive distribution of all simulated particles also allowed ready adaptation to infer other statistics of interest, such as the aerodynamic diameter of the resultant clusters. This approach is useful for prediction of the particle size distribution and chemical composition of powders produced by aerosolization and spray drying of suspensions.


Assuntos
Simulação por Computador , Método de Monte Carlo , Preparações Farmacêuticas/química , Administração por Inalação , Aerossóis , Algoritmos , Composição de Medicamentos , Tamanho da Partícula , Preparações Farmacêuticas/administração & dosagem , Pós , Reprodutibilidade dos Testes , Secagem por Atomização
5.
Int J Pharm ; 584: 119444, 2020 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-32445908

RESUMO

Spray freeze drying is a particle engineering technique that allows the production of porous particles of low density with excellent aerosol performance for inhalation. There are a number of operating parameters that can be manipulated in order to optimise the powder properties. In this study, a two-fluid nozzle was used to prepare spray freeze dried formulation of voriconazole, a triazole antifungal agent for the treatment of pulmonary aspergillosis. A full factorial design approach was adopted to explore the effects of drug concentration, atomisation gas flow rate and primary drying temperature. The aerosol performance of the spray freeze dried powder was evaluated using the next generation impactor (NGI) operated with different inhaler devices and flow rates. The results showed that the primary drying temperature played an important role in determining the aerosol properties of the powder. In general, the higher the primary drying temperature, the lower the emitted fraction (EF) and the higher the fine particle fraction (FPF). Formulations that contained the highest voriconazole concentration (80% w/w) and prepared at a high primary drying temperature (-10 °C) exhibited the best aerosol performance under different experimental conditions. The high concentration of the hydrophobic voriconazole reduced surface energy and cohesion, hence better powder dispersibility. The powders produced with higher primary drying temperature had a smaller particle size after dispersion and improved aerosol property, possibly due to the faster sublimation rate in the freeze-drying step that led to the formation of less aggregating or more fragile particles. Moreover, Breezhaler®, which has a low intrinsic resistance, was able to generate the best aerosol performance of the spray freeze dried voriconazole powders in terms of FPF.


Assuntos
Antifúngicos/química , Inaladores de Pó Seco , Voriconazol/química , Aerossóis , Dessecação , Composição de Medicamentos , Liofilização , Tamanho da Partícula , Pós
6.
Int J Pharm ; 560: 144-154, 2019 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-30731259

RESUMO

Systemic administration of antifungal agents for the treatment of pulmonary aspergillosis is limited by the poor lung deposition and severe adverse effects. In contrast, pulmonary delivery allows a higher amount of drug to be delivered directly to the infection site and therefore a lower dose is required. This study aimed to develop porous and inhalable voriconazole dry powder with good lung deposition by spray freeze drying (SFD), using tert-butyl alcohol (TBA) as a co-solvent. A three-factor two-level full factorial design approach was used to investigate the effect of total solute concentration, drug content and co-solvent composition on the aerosol performance of the SFD powder. In general, the SFD voriconazole powder exhibited porous and spherical structure, and displayed crystalline characteristics. The analysis of factorial design indicated that voriconazole content was the most significant variable that could influence the aerosol performance of the SFD powders. The formulations that contained a high voriconazole content (40% w/w) and high TBA concentration in the feed solution (70% v/v) displayed the highest fine particle fraction of over 40% in the Next Generation Impactor study in which the powder was dispersed with a Breezhaler® at 100 L/min. In addition, the fine particle dose of the SFD powder showed a faster dissolution rate when compared to the unformulated voriconazole. Intratracheal administration of SFD voriconazole powder to mice resulted in a substantially higher drug concentration in the lungs when comparing to the group that received an equivalent dose of liquid voriconazole formulation intravenously, while a clinically relevant plasma drug concentration was maintained for at least two hours. Overall, an inhalable voriconazole dry powder formulation exhibiting good aerosol property and lung deposition was developed with clinical translation potential.


Assuntos
Antifúngicos/administração & dosagem , Sistemas de Liberação de Medicamentos , Pulmão/metabolismo , Voriconazol/administração & dosagem , Administração por Inalação , Aerossóis , Animais , Antifúngicos/farmacocinética , Química Farmacêutica/métodos , Liberação Controlada de Fármacos , Inaladores de Pó Seco , Feminino , Liofilização , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Tamanho da Partícula , Porosidade , Solventes/química , Distribuição Tecidual , Voriconazol/farmacocinética
7.
Int J Pharm ; 572: 118818, 2019 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-31678379

RESUMO

The development of small interfering RNA (siRNA) formulation for pulmonary delivery is a key to the clinical translation of siRNA therapeutics for the treatment of respiratory diseases. Most inhalable siRNA powder formulations published to date were limited by the siRNA content which was often too low to be clinically relevant. This study aimed to prepare inhalable siRNA powder formulations that contained high siRNA loading of over 6% w/w by spray drying, with human serum albumin (HSA) investigated as a dispersion enhancer to improve the aerosol performance. The effect of siRNA, HSA and solute concentrations in the formulations were evaluated systemically using factorial analyses. All the spray dried siRNA powders exhibited excellent aerosol performance with fine particle fraction (FPF) consistently over 50% in all the formulations. An enrichment of HSA on the particle surface was observed. Surface corrugation was more prominent as HSA composition increased. Importantly, the bioactivity of siRNA was successfully preserved upon spray drying as demonstrated in the in vitro transfection study, and up to 78% of intact siRNA retained in the spray dried powder. Overall, HSA is an effective dispersion enhancer and spray drying is an appropriate technique to produce inhalable dry powder with high siRNA loading for further investigation.


Assuntos
RNA Interferente Pequeno/administração & dosagem , Albumina Sérica Humana/química , Administração por Inalação , Aerossóis , Humanos , Tamanho da Partícula , Pós
8.
Int J Pharm ; 552(1-2): 67-75, 2018 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-30244146

RESUMO

Spray freeze drying is an attractive technology to produce powder formulation for inhalation. It can be used to generate large porous particles which tend to aerosolize efficiently and do not aggregate readily. It also avoids material to be exposed to elevated temperature. In this study, we reported the use of two-fluid nozzle to produce spray freeze dried powder of small interfering RNA (siRNA). The effect of atomization gas flow rate and liquid feed rate were inspected initially using herring sperm DNA (hsDNA) as nucleic acid model. The atomization gas flow rate was found to have a major impact on the aerosol properties. The higher the atomization gas flow rate, the smaller the particle size, the higher the fine particle fraction (FPF). In contrast, the liquid feed rate had very minor effect. Subsequently, spray freeze dried siRNA powder was produced at various atomization gas flow rates. The particles produced were highly porous as examined with the scanning electron microscopy, and the structural integrity of the siRNA was demonstrated with gel electrophoresis. The gene-silencing effect of the siRNA was also successfully preserved in vitro. The best performing siRNA formulation was prepared at the highest atomization gas flow rate investigated with a moderate FPF of 30%. However, this was significantly lower than that obtained with the corresponding hsDNA counterparts (FPF ∼57%). A direct comparison between the hsDNA and siRNA formulations revealed that the former exhibited a lower density, hence a smaller aerodynamic diameter despite similar geometric size.


Assuntos
Composição de Medicamentos/métodos , RNA Interferente Pequeno/administração & dosagem , RNA Interferente Pequeno/química , Administração por Inalação , Aerossóis , Animais , Quimiocina CCL2/genética , Quimiocina CCL2/metabolismo , DNA/química , Composição de Medicamentos/instrumentação , Liofilização/instrumentação , Liofilização/métodos , Camundongos , Porosidade , Pós , Células RAW 264.7
9.
Asian J Pharm Sci ; 13(2): 163-172, 2018 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-32104389

RESUMO

The therapeutic potential of small nucleic acids such as small interfering RNA (siRNA) to treat lung diseases has been successfully demonstrated in many in vivo studies. A major barrier to their clinical application is the lack of a safe and efficient inhaled formulation. In this study, spray freeze drying was employed to prepare dry powder of small nucleic acids. Mannitol and herring sperm DNA were used as bulking agent and model of small nucleic acid therapeutics, respectively. Formulations containing different solute concentration and DNA concentration were produced. The scanning electron microscope (SEM) images showed that the porosity of the particles increased as the solute concentration decreased. Powders prepared with solute concentration of 5% w/v were found to maintain a balance between porosity and robustness. Increasing concentration of DNA improved the aerosol performance of the formulation. The dry powder formulation containing 2% w/w DNA had a median diameter of 12.5 µm, and the aerosol performance study using next generation impactor (NGI) showed an emitted fraction (EF) and fine particle fraction (FPF) of 91% and 28% respectively. This formulation (5% w/v solute concentration and 2% w/w nucleic acid) was adopted subsequently to produce siRNA powder. The gel retardation and liquid chromatography assays showed that the siRNA remained intact after spray freeze drying even in the absence of delivery vector. The siRNA powder formulation exhibited a high EF of 92.4% and a modest FPF of around 20%. Further exploration of this technology to optimise inhaled siRNA powder formulation is warranted.

10.
Int J Pharm ; 530(1-2): 40-52, 2017 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-28720537

RESUMO

Pulmonary delivery of short interfering RNA (siRNA) has been widely studied in both animal and clinical studies to treat various respiratory diseases by gene silencing through RNA interference. Some of these studies showed that the administration of naked siRNA (without the use of any delivery vectors) could achieve satisfactory gene silencing effect, a unique feature to pulmonary delivery. Liquid aerosols were mostly used with very limited studies on the use of powder aerosols for siRNA. In this study, siRNA was co-spray dried with mannitol and l-leucine, the latter being a dispersion enhancer. To the best of our knowledge, this is the first time that siRNA in its naked form was formulated into an inhalable dry powder using spray drying technology. The aerosol performance of the powder was evaluated by Next Generation Impactor (NGI). The presence of l-leucine in the formulation could improve the aerosolization of siRNA-containing powders. Results from the X-ray photoelectron spectroscopy (XPS) suggested that l-leucine was enriched on the particle surface and promote powder dispersion. Among the different siRNA formulations being examined, the one that contained 50% w/w of l-leucine exhibited the best aerodynamic performance, with a high emitted fraction (EF) of around 80% and a modest fine particle fraction (FPF) of 45%. Importantly, the integrity of siRNA was successfully retained as evaluated by gel retardation assay and high performance liquid chromatography (HPLC).


Assuntos
Leucina/química , Pós , RNA Interferente Pequeno/administração & dosagem , Administração por Inalação , Aerossóis , Química Farmacêutica , Inaladores de Pó Seco , Inativação Gênica , Tamanho da Partícula
11.
Eur J Pharm Biopharm ; 86(1): 64-73, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-23702276

RESUMO

Nucleic acids have the potential to be used as therapies or vaccines for many different types of disease, but delivery remains the most significant challenge to their clinical adoption. pH responsive peptides containing either histidine or derivatives of 2,3-diaminopropionic acid (Dap) can mediate effective DNA transfection in lung epithelial cells with the latter remaining effective even in the presence of lung surfactant containing bronchoalveolar lavage fluid (BALF), making this class of peptides attractive candidates for delivering nucleic acids to lung tissues. To further assess the suitability of pH responsive peptides for pulmonary delivery by inhalation, dry powder formulations of pH responsive peptides and plasmid DNA, with mannitol as carrier, were produced by either spray drying (SD) or spray freeze drying (SFD). The properties of the two types of powders were characterised and compared using scanning electron microscopy (SEM), next generation impactor (NGI), gel retardation and in vitro transfection via a twin stage impinger (TSI) following aerosolisation by a dry powder inhaler (Osmohaler™). Although the aerodynamic performance and transfection efficacy of both powders were good, the overall performance revealed SD powders to have a number of advantages over SFD powders and are the more effective formulation with potential for efficient nucleic acid delivery through inhalation.


Assuntos
DNA/administração & dosagem , Portadores de Fármacos/química , Células Epiteliais/metabolismo , Pulmão/metabolismo , Peptídeos/química , Transfecção , Sequência de Aminoácidos , Animais , Líquido da Lavagem Broncoalveolar/química , Linhagem Celular Tumoral , Química Farmacêutica , DNA/genética , Composição de Medicamentos/instrumentação , Inaladores de Pó Seco , Desenho de Equipamento , Liofilização , Humanos , Concentração de Íons de Hidrogênio , Dados de Sequência Molecular , Tamanho da Partícula , Plasmídeos , Ratos , Ratos Sprague-Dawley , Propriedades de Superfície
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA