Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Sensors (Basel) ; 24(11)2024 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-38894433

RESUMO

Multi-link operation (MLO) is a new and essential mechanism of IEEE 802.11be Extremely High Throughput (Wi-Fi 7) that can increase throughput and decrease latency in Wireless Local Area Networks (WLANs). The MLO enables a Multi-Link Device (MLD) to perform Simultaneous Transmission and Reception (STR) in different frequency bands. However, not all MLDs can support STR due to cross-link or in-device coexistence interference, while an STR-unable MLD (NSTR-MLD) can transmit multiple frames simultaneously in more than two links. This study focuses on the problems when NSTR-MLDs share a link with Single-Link Devices (SLDs). We propose a Contention-Less Synchronous Transmission (CLST) mechanism to improve fairness between NSTR-MLDs and SLDs while increasing the total network throughput. The proposed mechanism classifies links as MLD Dominant Links (MDLs) and Heterogeneous Coexistence Links (HCLs). In the proposed mechanism, an NSTR-MLD obtains a Synchronous Transmission Token (STT) through a virtual channel contention in the HCL but does not actually transmit a frame in the HCL, which is compensated for by a synchronous transmission triggered in the MDL. Moreover, the CLST mechanism allows additional subsequent transmissions up to the accumulated STT without further contention. Extensive simulation results confirm the outstanding performance of the CLST mechanism in terms of total throughput and fairness compared to existing synchronous transmission mechanisms.

2.
Sensors (Basel) ; 22(12)2022 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-35746211

RESUMO

In this study, we address the problem of downlink throughput degradation in dense wireless local area networks (WLANs) based on the IEEE 802.11ax standard. We demonstrate that this problem essentially results from the asymmetric characteristic of carrier sense multiple access between downlink and uplink transmissions in infrastructure WLANs, and it is exacerbated by a dynamic sensitivity control algorithm that aims to improve spatial reuse (SR) in IEEE 802.11ax. To solve this problem, we propose the interference-aware two-level differentiation mechanism consisting of the dual channel access (DCA) and supplemental power control (SPC) schemes. The proposed mechanism introduces a new measure called a spatial reusability indicator, which roughly estimates the signal-to-interference ratio from the received signal strength of beacon frames. Based on this measure, stations (STAs) are classified into the following two categories: spatial reusable STAs (SR-STAs) and non-spatial reusable STAs (NSR-STAs). Because SR-STAs are more robust to interference than NSR-STAs, the DCA scheme prioritizes transmissions to SR-STAs over those to NSR-STAs by using differentiated carrier sensing thresholds. Moreover, the SPC scheme selectively increases the transmission power to NSR-STAs to compensate for transmission failure due to interference. By combining the SPC and DCA schemes, the proposed mechanism effectively differentiates the downlink transmissions to SR-STAs and NSR-STAs in terms of channel access and transmission power, and it can boost the possibility of successful SR. The proposed mechanism can be easily implemented in IEEE 802.11ax without any complex calculation or significant signaling overhead. Moreover, we provide a practical guideline to determine appropriate parameter values for use in the proposed mechanism. The extensive simulation results obtained in this study confirm that the proposed mechanism increases the downlink throughput by more than several times without decreasing the overall throughput, compared to the existing mechanisms, and it maintains fairness between SR-STAs and NSR-STAs in terms of the ratio of successful transmission.

3.
Sensors (Basel) ; 21(15)2021 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-34372346

RESUMO

IEEE 802.11ax uplink orthogonal frequency division multiple access (OFDMA)-based random access (UORA) is a new feature for random channel access in wireless local area networks (WLANs). Similar to the legacy random access scheme in WLANs, UORA performs the OFDMA backoff (OBO) procedure to access the channel and decides on a random OBO counter within the OFDMA contention window (OCW) value. An access point (AP) can determine the OCW range and inform each station (STA) of it. However, how to determine a reasonable OCW range is beyond the scope of the IEEE 802.11ax standard. The OCW range is crucial to the UORA performance, and it primarily depends on the number of contending STAs, but it is challenging for the AP to accurately and quickly estimate or keep track of the number of contending STAs without the aid of a specific signaling mechanism. In addition, the one for this purpose incurs an additional delay and overhead in the channel access procedure. Therefore, the performance of a UORA scheme can be degraded by an improper OCW range, especially when the number of contending STAs changes dynamically. We first observed the effect of OCW values on channel efficiency and derived its optimal value from an analytical model. Next, we proposed a simple yet effective OBO control scheme where each STA determines its own OBO counter in a distributed manner rather than adjusting the OCW value globally. In the proposed scheme, each STA determines an appropriate OBO counter depending on whether the previous transmission was successful or not so that collisions can be mitigated without leaving OFDMA resource units unnecessarily idle. The results of a simulation study confirm that the throughput of the proposed scheme is comparable to the optimal OCW-based scheme and is improved by up to 15 times compared to the standard UORA scheme.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA