RESUMO
The modest in vitro activity of echinocandins against Aspergillus implies that host-related factors augment the action of these antifungal agents in vivo. We found that, in contrast to the other antifungal agents (voriconazole, amphotericin B) tested, caspofungin exhibited a profound increase in activity against various Aspergillus species under conditions of cell culture growth, as evidenced by a ≥4-fold decrease in minimum effective concentrations (MECs) (P = 0. 0005). Importantly, the enhanced activity of caspofungin against Aspergillus spp. under cell culture conditions was strictly dependent on serum albumin and was not observed with the other two echinocandins, micafungin and anidulafungin. Of interest, fluorescently labeled albumin bound preferentially on the surface of germinating Aspergillus hyphae, and this interaction was further enhanced upon treatment with caspofungin. In addition, supplementation of cell culture medium with albumin resulted in a significant, 5-fold increase in association of fluorescently labeled caspofungin with Aspergillus hyphae (P < 0.0001). Collectively, we found a novel synergistic interaction between albumin and caspofungin, with albumin acting as a potential carrier molecule to facilitate antifungal drug delivery to Aspergillus hyphae.
Assuntos
Albuminas/farmacologia , Antifúngicos/farmacologia , Aspergillus/efeitos dos fármacos , Equinocandinas/farmacologia , Lipopeptídeos/farmacologia , Albuminas/metabolismo , Anidulafungina , Aspergilose/microbiologia , Aspergillus/crescimento & desenvolvimento , Aspergillus/isolamento & purificação , Caspofungina , Meios de Cultura/química , Humanos , Hifas/efeitos dos fármacos , Micafungina , Testes de Sensibilidade Microbiana , Voriconazol/farmacologiaRESUMO
Aspergillus fumigatus is the predominant airborne fungal pathogen in immunocompromised patients. Genetic defects in NADPH oxidase (chronic granulomatous disease [CGD]) and corticosteroid-induced immunosupression lead to impaired killing of A. fumigatus and unique susceptibility to invasive aspergillosis via incompletely characterized mechanisms. Recent studies link TLR activation with phagosome maturation via the engagement of autophagy proteins. In this study, we found that infection of human monocytes with A. fumigatus spores triggered selective recruitment of the autophagy protein LC3 II in phagosomes upon fungal cell wall swelling. This response was induced by surface exposure of immunostimulatory ß-glucans and was mediated by activation of the Dectin-1 receptor. LC3 II recruitment in A. fumigatus phagosomes required spleen tyrosine kinase (Syk) kinase-dependent production of reactive oxygen species and was nearly absent in monocytes of patients with CGD. This pathway was important for control of intracellular fungal growth, as silencing of Atg5 resulted in impaired phagosome maturation and killing of A. fumigatus. In vivo and ex vivo administration of corticosteroids blocked LC3 II recruitment in A. fumigatus phagosomes via rapid inhibition of phosphorylation of Src and Syk kinases and downstream production of reactive oxygen species. Our studies link Dectin-1/Syk kinase signaling with autophagy-dependent maturation of A. fumigatus phagosomes and uncover a potential mechanism for development of invasive aspergillosis in the setting of CGD and corticosteroid-induced immunosupression.
Assuntos
Aspergillus fumigatus/imunologia , Autofagia/imunologia , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Lectinas Tipo C/metabolismo , Leucócitos Mononucleares/imunologia , Proteínas Associadas aos Microtúbulos/metabolismo , Proteínas Tirosina Quinases/metabolismo , Corticosteroides/metabolismo , Corticosteroides/farmacologia , Idoso , Aspergilose/imunologia , Proteína 5 Relacionada à Autofagia , Células Cultivadas , Feminino , Doença Granulomatosa Crônica/imunologia , Doença Granulomatosa Crônica/metabolismo , Humanos , Proteínas Associadas aos Microtúbulos/efeitos dos fármacos , Proteínas Associadas aos Microtúbulos/genética , Pessoa de Meia-Idade , Fagossomos/imunologia , Fagossomos/microbiologia , Fosforilação/efeitos dos fármacos , Interferência de RNA , RNA Interferente Pequeno , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais , Quinase Syk , Quinases da Família src/metabolismoRESUMO
The analysis of phagolysosomes within professional phagocytic cells is facilitated by their isolation. Here, we optimized a protocol for the isolation of intact phagolysosomes from macrophages infected with the spores of Aspergillus fumigatus. Purified phagolysosomes allow improved immunostaining, e.g., of phagolysosomal membrane proteins, or proteome analysis. For complete details on the use and execution of this protocol, please refer to Schmidt et al. (2020).
Assuntos
Aspergillus fumigatus/metabolismo , Macrófagos , Fagossomos , Esporos Fúngicos/metabolismo , Animais , Imunofluorescência , Macrófagos/metabolismo , Macrófagos/microbiologia , Camundongos , Fagossomos/metabolismo , Fagossomos/microbiologia , Células RAW 264.7RESUMO
Hepatocyte nuclear factor 4 (HNF-4) is a key member of the transcription factor network regulating hepatocyte differentiation and function. Activation of the HNF-4 gene involves physical interaction between a distant enhancer and the proximal promoter region, bound by distinct sets of transcription factors. Here we report that, upon mitogen-activated protein (MAP) kinase activation, HNF-4 expression is downregulated in human hepatoma cells. This effect is mediated by the loss of CEBPalpha expression. During MAP kinase signaling, the recruitment of HNF-3beta and HNF-1alpha to the HNF-4 enhancer and RNA polymerase II to the proximal HNF-4 promoter was compromised. CBP, Brg1, and TFIIB were also dissociated from the HNF-4 regulatory regions, and the enhancer-promoter complex was disrupted. Interestingly, the extent of nucleosome acetylation did not decrease at either regulatory region, and HNF-6 and HNF-1alpha, as well as components of the TFIID, remained associated with the proximal promoter during the repressed state. The results point to an absolute requirement of enhancer-promoter communication for maintaining the active state of the HNF-4 gene and provide evidence for a molecular bookmarking mechanism, which may contribute to the prevention of permanent silencing of the locus during the repressed state.
Assuntos
Elementos Facilitadores Genéticos/genética , Fator 4 Nuclear de Hepatócito/genética , Fator 4 Nuclear de Hepatócito/metabolismo , Proteína Quinase 1 Ativada por Mitógeno/metabolismo , Regiões Promotoras Genéticas/genética , Acetilação/efeitos dos fármacos , Proteína alfa Estimuladora de Ligação a CCAAT/deficiência , Proteína alfa Estimuladora de Ligação a CCAAT/genética , Células Cultivadas , DNA Helicases , Regulação para Baixo/efeitos dos fármacos , Ativação Enzimática/efeitos dos fármacos , Fator 4 Nuclear de Hepatócito/deficiência , Histonas/metabolismo , Humanos , Modelos Genéticos , Proteínas Nucleares/metabolismo , Interferência de RNA , RNA Polimerase II/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Transdução de Sinais/efeitos dos fármacos , Acetato de Tetradecanoilforbol/farmacologia , Fatores de Transcrição/metabolismoRESUMO
The original version of this Article contained an error in the spelling of the author Emilien Etienne, which was incorrectly given as Emilien Ettiene. These errors have now been corrected in both the PDF and HTML versions of the Article.
RESUMO
Mucormycosis is a life-threatening respiratory fungal infection predominantly caused by Rhizopus species. Mucormycosis has incompletely understood pathogenesis, particularly how abnormalities in iron metabolism compromise immune responses. Here we show how, as opposed to other filamentous fungi, Rhizopus spp. establish intracellular persistence inside alveolar macrophages (AMs). Mechanistically, lack of intracellular swelling of Rhizopus conidia results in surface retention of melanin, which induces phagosome maturation arrest through inhibition of LC3-associated phagocytosis. Intracellular inhibition of Rhizopus is an important effector mechanism, as infection of immunocompetent mice with swollen conidia, which evade phagocytosis, results in acute lethality. Concordantly, AM depletion markedly increases susceptibility to mucormycosis. Host and pathogen transcriptomics, iron supplementation studies, and genetic manipulation of iron assimilation of fungal pathways demonstrate that iron restriction inside macrophages regulates immunity against Rhizopus. Our findings shed light on the pathogenetic mechanisms of mucormycosis and reveal the role of macrophage-mediated nutritional immunity against filamentous fungi.
Assuntos
Interações Hospedeiro-Patógeno , Ferro/metabolismo , Pulmão/microbiologia , Macrófagos Alveolares/metabolismo , Rhizopus/fisiologia , Animais , Parede Celular/metabolismo , Regulação da Expressão Gênica , Macrófagos Alveolares/ultraestrutura , Melaninas/metabolismo , Camundongos Endogâmicos C57BL , Viabilidade Microbiana , Modelos Biológicos , Mucormicose/genética , Mucormicose/microbiologia , Mucormicose/patologia , Fagossomos/metabolismo , Fagossomos/ultraestrutura , Rhizopus/crescimento & desenvolvimento , Esporos Fúngicos/fisiologiaRESUMO
LC3-associated phagocytosis (LAP) is a non-canonical autophagy pathway regulated by Rubicon, with an emerging role in immune homeostasis and antifungal host defence. Aspergillus cell wall melanin protects conidia (spores) from killing by phagocytes and promotes pathogenicity through blocking nicotinamide adenine dinucleotide phosphate (NADPH) oxidase-dependent activation of LAP. However, the signalling regulating LAP upstream of Rubicon and the mechanism of melanin-induced inhibition of this pathway remain incompletely understood. Herein, we identify a Ca2+ signalling pathway that depends on intracellular Ca2+ sources from endoplasmic reticulum, endoplasmic reticulum-phagosome communication, Ca2+ release from phagosome lumen and calmodulin (CaM) recruitment, as a master regulator of Rubicon, the phagocyte NADPH oxidase NOX2 and other molecular components of LAP. Furthermore, we provide genetic evidence for the physiological importance of Ca2+-CaM signalling in aspergillosis. Finally, we demonstrate that Ca2+ sequestration by Aspergillus melanin inside the phagosome abrogates activation of Ca2+-CaM signalling to inhibit LAP. These findings reveal the important role of Ca2+-CaM signalling in antifungal immunity and identify an immunological function of Ca2+ binding by melanin pigments with broad physiological implications beyond fungal disease pathogenesis.
Assuntos
Aspergillus fumigatus/metabolismo , Cálcio/metabolismo , Calmodulina/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Melaninas/metabolismo , Proteínas Associadas aos Microtúbulos/metabolismo , Animais , Aspergilose/genética , Aspergilose/metabolismo , Aspergillus fumigatus/genética , Autofagia , Proteínas Relacionadas à Autofagia , Sinalização do Cálcio , Retículo Endoplasmático/metabolismo , Humanos , Camundongos , FagocitoseRESUMO
Intracellular swelling of conidia of the major human airborne fungal pathogen Aspergillus fumigatus results in surface exposure of immunostimulatory pathogen-associated molecular patterns (PAMPs) and triggers activation of a specialized autophagy pathway called LC3-associated phagocytosis (LAP) to promote fungal killing. We have recently discovered that, apart from PAMPs exposure, cell wall melanin removal during germination of A. fumigatus is a prerequisite for activation of LAP. Importantly, melanin promotes fungal pathogenicity via targeting LAP, as a melanin-deficient A. fumigatus mutant restores its virulence upon conditional inactivation of Atg5 in hematopoietic cells of mice. Mechanistically, fungal cell wall melanin selectively excludes the CYBA/p22phox subunit of NADPH oxidase from the phagosome to inhibit LAP, without interfering with signaling regulating cytokine responses. Notably, inhibition of LAP is a general property of melanin pigments, a finding with broad physiological implications.
Assuntos
Melaninas/metabolismo , Micoses/metabolismo , Fagocitose/fisiologia , Animais , Aspergillus fumigatus , Humanos , Micoses/microbiologia , Fagossomos/efeitos dos fármacos , Fagossomos/metabolismoRESUMO
Concealing pathogen-associated molecular patterns (PAMPs) is a principal strategy used by fungi to avoid immune recognition. Surface exposure of PAMPs during germination can leave the pathogen vulnerable. Accordingly, ß-glucan surface exposure during Aspergillus fumigatus germination activates an Atg5-dependent autophagy pathway termed LC3-associated phagocytosis (LAP), which promotes fungal killing. We found that LAP activation also requires the genetic, biochemical or biological (germination) removal of A. fumigatus cell wall melanin. The attenuated virulence of melanin-deficient A. fumigatus is restored in Atg5-deficient macrophages and in mice upon conditional inactivation of Atg5 in hematopoietic cells. Mechanistically, Aspergillus melanin inhibits NADPH oxidase-dependent activation of LAP by excluding the p22phox subunit from the phagosome. Thus, two events that occur concomitantly during germination of airborne fungi, surface exposure of PAMPs and melanin removal, are necessary for LAP activation and fungal killing. LAP blockade is a general property of melanin pigments, a finding with broad physiological implications.
Assuntos
Aspergilose/microbiologia , Aspergillus fumigatus/metabolismo , Aspergillus fumigatus/patogenicidade , Parede Celular/metabolismo , Melaninas/metabolismo , Proteínas Associadas aos Microtúbulos/imunologia , Fagocitose , Animais , Aspergilose/imunologia , Aspergilose/fisiopatologia , Aspergillus fumigatus/genética , Proteína 5 Relacionada à Autofagia , Parede Celular/genética , Humanos , Melaninas/genética , Camundongos , Proteínas Associadas aos Microtúbulos/genética , Fagossomos/imunologia , VirulênciaRESUMO
The MAPK3 Tpl2 controls innate and adaptive immunity by regulating TLR, TNF-α, and GPCR signaling in a variety of cell types. Its ablation gives rise to an anti-inflammatory phenotype characterized by resistance to LPS-induced endotoxin shock, DSS-induced colitis, and TNF-α-induced IBD. Here, we address the role of Tpl2 in autoimmunity. Our data show that the ablation and the pharmacological inhibition of Tpl2 protect mice from antiplatelet antibody-induced thrombocytopenia, a model of ITP. Thrombocytopenia in this model and in ITP is caused by phagocytosis of platelets opsonized with antiplatelet antibodies and depends on FcγR activation in splenic and hepatic myeloid cells. Further studies explained how Tpl2 inhibition protects from antibody-induced thrombocytopenia, by showing that Tpl2 is activated by FcγR signals in macrophages and that its activation by these signals is required for ERK activation, cytoplasmic Ca(2+) influx, the induction of cytokine and coreceptor gene expression, and phagocytosis.
Assuntos
MAP Quinase Quinase Quinases/metabolismo , Proteínas Proto-Oncogênicas/metabolismo , Púrpura Trombocitopênica Idiopática/enzimologia , Púrpura Trombocitopênica Idiopática/imunologia , Receptores de IgG/metabolismo , Transdução de Sinais/imunologia , Animais , Anticorpos , Cálcio/metabolismo , Reagentes de Ligações Cruzadas/metabolismo , Citocinas/biossíntese , Citoplasma/metabolismo , Modelos Animais de Doenças , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , MAP Quinase Quinase Quinases/antagonistas & inibidores , MAP Quinase Quinase Quinases/deficiência , Macrófagos/enzimologia , Camundongos , Camundongos Endogâmicos C57BL , Células Mieloides/metabolismo , Fagocitose , Fosforilação , Proteínas Proto-Oncogênicas/antagonistas & inibidores , Proteínas Proto-Oncogênicas/deficiência , Púrpura Trombocitopênica Idiopática/patologia , Púrpura Trombocitopênica Idiopática/prevenção & controleRESUMO
Adaptation of liver to nutritional signals is regulated by several transcription factors that are modulated by intracellular metabolites. Here, we demonstrate a transcription factor network under the control of hepatocyte nuclear factor 4alpha (HNF4alpha) that coordinates the reciprocal expression of fatty acid transport and metabolizing enzymes during fasting and feeding conditions. Hes6 is identified as a novel HNF4alpha target, which in normally fed animals, together with HNF4alpha, maintains PPARgamma expression at low levels and represses several PPARalpha-regulated genes. During fasting, Hes6 expression is diminished, and peroxisome proliferator-activated receptor alpha (PPARalpha) replaces the HNF4alpha/Hes6 complex on regulatory regions of target genes to activate transcription. Gene expression and promoter occupancy analyses confirmed that HNF4alpha is a direct activator of the Pparalpha gene in vivo and that its expression is subject to feedback regulation by PPARalpha and Hes6 proteins. These results establish the fundamental role of dynamic regulatory interactions between HNF4alpha, Hes6, PPARalpha, and PPARgamma in the coordinated expression of genes involved in fatty acid transport and metabolism.
Assuntos
Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Ácidos Graxos/metabolismo , Redes Reguladoras de Genes , Fator 4 Nuclear de Hepatócito/metabolismo , Fígado/metabolismo , Proteínas Repressoras/metabolismo , Fatores de Transcrição/metabolismo , Animais , Transporte Biológico/fisiologia , Linhagem Celular Tumoral , Regulação Enzimológica da Expressão Gênica/genética , Regulação Enzimológica da Expressão Gênica/fisiologia , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos CBA , Camundongos Transgênicos , PPAR alfa/metabolismo , PPAR gama/metabolismo , Regiões Promotoras Genéticas/fisiologia , Transdução de Sinais/genética , Transdução de Sinais/fisiologia , Ativação Transcricional/fisiologiaRESUMO
UNLABELLED: In liver, most genes are expressed with a porto-central gradient. The transcription factor hepatic nuclear-factor4alpha (HNF4alpha) is associated with 12% of the genes in adult liver, but its involvement in zonation of gene expression has not been investigated. A putative HNF4alpha-response element in the upstream enhancer of glutamine synthetase (GS), an exclusively pericentral enzyme, was protected against DNase-I and interacted with a protein that is recognized by HNF4alpha-specific antiserum. Chromatin-immunoprecipitation assays of HNF4alpha-deficient (H4LivKO) and control (H4Flox) livers with HNF4alpha antiserum precipitated the GS upstream enhancer DNA only from H4Flox liver. Identical results were obtained with a histone-deacetylasel (HDAC1) antibody, but antibodies against HDAC3, SMRT and SHP did not precipitate the GS upstream enhancer. In H4Flox liver, GS, ornithine aminotransferase (OAT) and thyroid hormone-receptor beta1 (TRbeta1) were exclusively expressed in pericentral hepatocytes. In H4LivKO liver, this pericentral expression remained unaffected, but the genes were additionally expressed in the periportal hepatocytes, albeit at a lower level. The expression of the periportal enzyme phosphoenolpyruvate carboxykinase had declined in HNF4alpha-deficient hepatocytes. GS-negative cells, which were present as single, large hepatocytes or as groups of small cells near portal veins, did express HNF4alpha. Clusters of very small GS- and HNF4alpha-negative, and PCNA- and OV6-positive cells near portal veins were contiguous with streaks of brightly HNF4alpha-positive, OV6-, PCNA-, and PEPCK-dim cells. CONCLUSION: Our findings show that HNF4alpha suppresses the expression of pericentral proteins in periportal hepatocytes, possibly via a HDAC1-mediated mechanism. Furthermore, we show that HNF4alpha deficiency induces foci of regenerating hepatocytes.
Assuntos
Glutamato-Amônia Ligase/metabolismo , Fator 4 Nuclear de Hepatócito/metabolismo , Fígado/metabolismo , Ornitina-Oxo-Ácido Transaminase/metabolismo , Receptores beta dos Hormônios Tireóideos/metabolismo , Animais , Sequência de Bases , DNA/metabolismo , Elementos Facilitadores Genéticos/genética , Glutamato-Amônia Ligase/genética , Fator 4 Nuclear de Hepatócito/genética , Hepatócitos/metabolismo , Fígado/citologia , Regeneração Hepática/fisiologia , Camundongos , Camundongos Knockout , Dados de Sequência Molecular , Ornitina-Oxo-Ácido Transaminase/genética , Fosfoenolpiruvato Carboxiquinase (ATP)/metabolismo , Antígeno Nuclear de Célula em Proliferação/metabolismo , Ratos , Receptores beta dos Hormônios Tireóideos/genéticaRESUMO
Cross-regulatory cascades between hepatic transcription factors have been implicated in the determination of the hepatic phenotype. Analysis of recruitments to regulatory regions and the temporal and spatial expression pattern of the main hepatic regulators during liver development revealed a gradual increase in complexity of autoregulatory and cross-regulatory circuits. Within these circuits we identified a core group of six transcription factors, which regulate the expression of each other and the expression of other downstream hepatic regulators. Changes in the promoter occupancy patterns during development included new recruitments, release, and exchange of specific factors. We also identified promoter and developmental stage-specific dual regulatory functions of certain factors as an important feature of the network. Inactivation of HNF-4alpha in embryonic, but not in adult, liver resulted in the diminished expression of most hepatic factors, demonstrating that the stability of the network correlates with its complexity. The results illustrate the remarkable flexibility of a self-sustaining transcription factor network, built up by complex dominant and redundant regulatory motifs in developing hepatocytes.