RESUMO
Serratia spp. are opportunistic human pathogens responsible for an increasing number of nosocomial infections. However, little is known about the virulence factors and regulatory circuits that may enhance the establishment and long-term survival of Serratia liquefaciens in the hospital environment. In this study, two reporter strains, Chromobacterium violaceum CV026 and VIR24, and high-resolution triple-quadrupole liquid chromatography-mass spectrometry (LC-MS) were used to detect and to quantify N-acyl-homoserine lactone (AHL) quorum-sensing signals in 20 S. liquefaciens strains isolated from clinical samples. Only four of the strains produced sufficient amounts of AHLs to activate the sensors. Investigation of two of the positive strains by high-performance liquid chromatography (HPLC)-MS confirmed the presence of significant amounts of short-acyl-chain AHLs (N-butyryl-l-homoserine lactone [C4-HSL] and N-hexanoyl-l-homoserine lactone [C6-HSL]) in both strains, which exhibited a complex and strain-specific signal profile that included minor amounts of other short-acyl-chain AHLs (N-octanoyl-l-homoserine lactone [C8-HSL] and N-3-oxohexanoyl-l-homoserine lactone [OC6-HSL]) and long-acyl-chain (C10, C12, and C14) AHLs. No correlation between biofilm formation and the production of large amounts of AHLs could be established. Fimbria-like structures were observed by transmission electron microscopy, and the presence of the type 1 fimbrial adhesin gene fimH in all strains was confirmed by PCR. The ability of S. liquefaciens to adhere to abiotic surfaces and to form biofilms likely contributes to its persistence in the hospital environment, increasing the probability of causing nosocomial infections. Therefore, a better understanding of the adherence properties of this species will provide greater insights into the diseases it causes.
Assuntos
Biofilmes , Infecção Hospitalar/microbiologia , Percepção de Quorum , Infecções por Serratia/microbiologia , Serratia liquefaciens/fisiologia , 4-Butirolactona/análogos & derivados , 4-Butirolactona/metabolismo , Humanos , Serratia liquefaciens/genética , Serratia liquefaciens/isolamento & purificaçãoRESUMO
The global threat posed by antimicrobial resistance demands urgent action and the development of effective drugs. Lower respiratory tract infections remain the deadliest communicable disease worldwide, often challenging to treat due to the presence of bacteria that form recalcitrant biofilms. There is consensus that novel anti-infectives with reduced resistance compared with conventional antibiotics are needed, leading to extensive research on innovative antibacterial agents. This review explores the recent progress in lipid-based nanomedicines developed to counteract bacterial respiratory infections, especially those involving biofilm growth; focuses on improved drug bioavailability and targeting and highlights novel strategies to enhance treatment efficacy while emphasizing the importance of continued research in this dynamic field.
Assuntos
Infecções Bacterianas , Infecções Respiratórias , Humanos , Nanomedicina , Infecções Bacterianas/tratamento farmacológico , Antibacterianos/uso terapêutico , Antibacterianos/farmacologia , Infecções Respiratórias/tratamento farmacológico , Biofilmes , Lipídeos/uso terapêuticoRESUMO
Humanized immunodeficient mice serve as critical models for investigating the functional interplay between transplanted human cells and a pre-reconstituted human immune system. These models facilitate the study of molecular and cellular pathogenic mechanisms and enable the evaluation of the efficacy and toxicity of immunotherapies, thereby accelerating their preclinical and clinical development. Current strategies rely on inefficient, long-term/delayed hematopoietic reconstitution by CD34+ hematopoietic progenitors or short-term reconstitution with peripheral blood mononuclear cells (PB-MNCs) associated with high rates of graft-versus-host disease (GvHD) and an inefficient representation of immune cell populations. Here, we hypothesized that immunologically naïve cord blood mononuclear cells (CB-MNCs) could serve as a superior alternative, providing long-lasting and functionally effective immune reconstitution. We conducted a comprehensive comparison between the non-obese diabetic (NOD).Cg-Prkdcâ§Ëscid-IL2rgâ§Ëtm1Wjl/SzJ (NSG) and NSG-Tg(CMV-IL3,CSF2,KITLG)â§Ë1Eav/MloySzJ (NSGS) immunodeficient mouse models following humanization with either PB-MNCs or CB-MNCs. We assessed the engraftment dynamics of various human immune cells over time and monitored the development of GvHD in both models. For the most promising model, we extensively evaluated immune cell functionality in vitro and in vivo using sarcoma and leukemia xenografts. Humanizing NSGS mice with CB-MNCs results in a rapid, robust, and sustained representation of a diverse range of functional human lymphoid and myeloid cell populations while minimizing GvHD incidence. In this model, human immune cell populations significantly impair the growth and engraftment of sarcoma and B-cell acute lymphoblastic leukemia cells, with a significant inverse correlation between immune cell levels and tumor growth. This study establishes a fast, efficient, and reliable in vivo platform for various applications in cancer immunotherapy, particularly for exploring the complex interactions between cancer cells, immune cells, and the tumor microenvironment in vivo, prior to clinical development.
Assuntos
Sangue Fetal , Doença Enxerto-Hospedeiro , Leucócitos Mononucleares , Camundongos Endogâmicos NOD , Animais , Humanos , Doença Enxerto-Hospedeiro/imunologia , Camundongos , Sangue Fetal/citologia , Sangue Fetal/imunologia , Leucócitos Mononucleares/imunologia , Leucócitos Mononucleares/transplante , Leucócitos Mononucleares/metabolismo , Modelos Animais de Doenças , Células Mieloides/imunologia , Células Mieloides/metabolismo , Linfócitos/imunologia , Camundongos SCIDRESUMO
Biofilm formation by the pathobiont Haemophilus influenzae is associated with human nasopharynx colonization, otitis media in children, and chronic respiratory infections in adults suffering from chronic respiratory diseases such as chronic obstructive pulmonary disease (COPD). ß-lactam and quinolone antibiotics are commonly used to treat these infections. However, considering the resistance of biofilm-resident bacteria to antibiotic-mediated killing, the use of antibiotics may be insufficient and require being replaced or complemented with novel strategies. Moreover, unlike the standard minimal inhibitory concentration assay used to assess antibacterial activity against planktonic cells, standardization of methods to evaluate anti-biofilm drug activity is limited. In this work, we detail a panel of protocols for systematic analysis of drug antimicrobial effect on bacterial biofilms, customized to evaluate drug effects against H. influenzae biofilms. Testing of two cinnamaldehyde analogs, (E)-trans-2-nonenal and (E)-3-decen-2-one, demonstrated their effectiveness in both H. influenzae inhibition of biofilm formation and eradication or preformed biofilms. Assay complementarity allowed quantifying the dynamics and extent of the inhibitory effects, also observed for ampicillin resistant clinical strains forming biofilms refractory to this antibiotic. Moreover, cinnamaldehyde analog encapsulation into poly(lactic-co-glycolic acid) (PLGA) polymeric nanoparticles allowed drug vehiculization while maintaining efficacy. Overall, we demonstrate the usefulness of cinnamaldehyde analogs against H. influenzae biofilms, present a test panel that can be easily adapted to a wide range of pathogens and drugs, and highlight the benefits of drug nanoencapsulation towards safe controlled release.
RESUMO
Acne is a dermatologic disease with a strong pathologic association with human commensal Cutibacterium acnes. Conspicuously, certain C. acnes phylotypes are associated with acne, whereas others are associated with healthy skin. Here we investigate if the evolution of a C. acnes enzyme contributes to health or acne. Two hyaluronidase variants exclusively expressed by C. acnes strains, HylA and HylB, demonstrate remarkable clinical correlation with acne or health. We show that HylA is strongly pro-inflammatory, and HylB is modestly anti-inflammatory in a murine (female) acne model. Structural and phylogenic studies suggest that the enzymes evolved from a common hyaluronidase that acquired distinct enzymatic activity. Health-associated HylB degrades hyaluronic acid (HA) exclusively to HA disaccharides leading to reduced inflammation, whereas HylA generates large-sized HA fragments that drive robust TLR2-dependent pathology. Replacing an amino acid, Serine to Glycine near the HylA catalytic site enhances the enzymatic activity of HylA and produces an HA degradation pattern intermediate to HylA and HylB. Selective targeting of HylA using peptide vaccine or inhibitors alleviates acne pathology. We suggest that the functional divergence of HylA and HylB is a major driving force behind C. acnes health- and acne- phenotype and propose targeting of HylA as an approach for acne therapy.
Assuntos
Acne Vulgar , Hialuronoglucosaminidase , Humanos , Feminino , Animais , Camundongos , Pele/microbiologia , Propionibacterium acnes/genética , AminoácidosRESUMO
Antibiotic resistance is a major Public Health challenge worldwide. Mechanisms other than resistance are described as contributors to therapeutic failure. These include heteroresistance and tolerance, which escape the standardized procedures used for antibiotic treatment decision-making as they do not involve changes in minimal inhibitory concentration (MIC). Haemophilus influenzae causes chronic respiratory infection and is associated with exacerbations suffered by chronic obstructive pulmonary disease (COPD) patients. Although resistance to imipenem is rare in this bacterial species, heteroresistance has been reported, and antibiotic tolerance cannot be excluded. Moreover, development of antibiotic heteroresistance or tolerance during within-host H. influenzae pathoadaptive evolution is currently unknown. In this study, we assessed imipenem resistance, heteroresistance and tolerance in a previously sequenced longitudinal collection of H. influenzae COPD respiratory isolates. The use of Etest, disc diffusion, population analysis profiling, tolerance disc (TD)-test methods, and susceptibility breakpoint criteria when available, showed a significant proportion of imipenem heteroresistance with differences in terms of degree among strains, absence of imipenem tolerance, and no specific trends among serial and clonally related strains could be established. Analysis of allelic variation in the ftsI, acrA, acrB, and acrR genes rendered a panel of polymorphisms only found in heteroresistant strains, but gene expression and genome-wide analyses did not show clear genetic traits linked to heteroresistance. In summary, a significant proportion of imipenem heteroresistance was observed among H. influenzae strains isolated from COPD respiratory samples over time. These data should be useful for making more accurate clinical recommendations to COPD patients.
RESUMO
IMPORTANCE: Genomic diversity of nontypeable H. influenzae strains confers phenotypic heterogeneity. Multiple strains of H. influenzae can be simultaneously isolated from clinical specimens, but we lack detailed information about polyclonal infection dynamics by this pathogen. A long-term barrier to our understanding of this host-pathogen interplay is the lack of genetic tools for strain engineering and differential labeling. Here, we present a novel plasmid toolkit named pTBH (toolbox for Haemophilus), with standardized modules for fluorescent or bioluminescent labeling, adapted to H. influenzae requirements but designed to be versatile so it can be utilized in other bacterial species. We present detailed experimental and quantitative image analysis methods, together with proof-of-principle examples, and show the ample possibilities of 3D microscopy, combined with quantitative image analysis, to model H. influenzae polyclonal infection lifestyles and unravel the co-habitation and co-infection dynamics of this respiratory pathogen.
Assuntos
Infecções por Haemophilus , Haemophilus influenzae , Humanos , Haemophilus influenzae/genética , Sistema Respiratório , Infecções por Haemophilus/microbiologia , MicroscopiaRESUMO
Antimicrobial-resistant pathogenic bacteria are an increasing problem in public health, especially in the healthcare environment, where nosocomial infection microorganisms find their niche. Among these bacteria, the genus Acinetobacter which belongs to the ESKAPE pathogenic group harbors different multi-drug resistant (MDR) species that cause human nosocomial infections. Although A. baumannii has always attracted more interest, the close-related species A. pittii is the object of more study due to the increase in its isolation and MDR strains. In this work, we present the genomic analysis of five clinically isolated A. pittii strains from a Spanish hospital, with special attention to their genetic resistance determinants and plasmid structures. All the strains harbored different genes related to ß-lactam resistance, as well as different MDR efflux pumps. We also found and described, for the first time in this species, point mutations that seem linked with colistin resistance, which highlights the relevance of this comparative analysis among the pathogenic species isolates.
RESUMO
Acinetobacter baumannii is a Gram-negative coccoid rod species, clinically relevant as a human pathogen, included in the ESKAPE group. Carbapenem-resistant A. baumannii (CRAB) are considered by the World Health Organization (WHO) as a critical priority pathogen for the research and development of new antibiotics. Some of the most relevant features of this pathogen are its intrinsic multidrug resistance and its ability to acquire rapid and effective new resistant determinants against last-resort clinical antibiotics, mostly from other ESKAPE species. The presence of plasmids and mobile genetic elements in their genomes contributes to the acquisition of new antimicrobial resistance determinants. However, although A. baumannii has arisen as an important human pathogen, information about these elements is still not well understood. Current genomic analysis availability has increased our ability to understand the microevolution of bacterial pathogens, including point mutations, genetic dissemination, genomic stability, and pan- and core-genome compositions. In this work, we deeply studied the genomes of four clinical strains from our hospital, and the reference strain ATCC®19606TM, which have shown a remarkable ability to survive and maintain their effective capacity when subjected to long-term stress conditions. With that, our aim was presenting a detailed analysis of their genomes, including antibiotic resistance determinants and plasmid composition.
RESUMO
Acinetobacter baumannii is a Gram negative nosocomial pathogen that has acquired increasing worldwide notoriety due to its high antibiotic resistance range and mortality rates in hospitalized patients. Therefore, it is necessary to better understand key aspects of A. baumannii pathogenesis such as host-pathogen interactions. In this report, we analyzed both gene expression and cytokine production by human neutrophils infected with A. baumannii. Our assays reveal a proinflammatory response of neutrophils after A. baumannii infection, since intracellular transcription of effector proteins such as COX-2, transcription factors, and proinflammatory cytokines resulted significantly upregulated in neutrophils infected by A. baumannii, compared with unstimulated human neutrophils. Translation and release of CXCL-8, IL-1ß and TNF-α by neutrophils was confirmed by protein quantification in culture supernatants. Results obtained in this report reinforce the importance of human neutrophils in controlling A. baumannii infections but also emphasize the proinflammatory nature of these host-pathogen interactions as a target for future immunomodulatory therapies.
Assuntos
Infecções por Acinetobacter/metabolismo , Acinetobacter baumannii/metabolismo , Citocinas/biossíntese , Perfilação da Expressão Gênica , Regulação da Expressão Gênica , Neutrófilos/metabolismo , Infecções por Acinetobacter/patologia , Humanos , Neutrófilos/microbiologia , Neutrófilos/patologiaRESUMO
An amendment to this paper has been published and can be accessed via a link at the top of the paper.
RESUMO
Acinetobacter baumannii strain HUMV-3743 was obtained from wound exudate from an adult patient. Here, we report its complete genome sequence using Illumina-based sequence analysis, which revealed a genome of 4 Mb, which includes 2 predicted plasmids of 78.9 and 107 kb. A total of 3,881 protein-coding genes are predicted from this assembly.
RESUMO
Acinetobacter baumannii is a cause of healthcare-associated infections. Although A. baumannii is an opportunistic pathogen, its infections are notoriously difficult to treat due to intrinsic and acquired antimicrobial resistance, often limiting effective therapeutic options. A. baumannii can survive for long periods in the hospital environment, particularly on inanimate surfaces. Such environments may act as a reservoir for cross-colonization and infection outbreaks and should be considered a substantial factor in infection control practices. Moreover, clothing of healthcare personnel and gadgets may play a role in the spread of nosocomial bacteria. A link between contamination of hospital surfaces and A. baumannii infections or between its persistence in the environment and its virulence has not yet been established. Bacteria under stress (i.e., long-term desiccation in hospital setting) could conserve factors that favor infection. To investigate whether desiccation and/or starvation may be involved in the ability of certain strains of A. baumannii to retain virulence factors, we have studied five well-characterized clinical isolates of A. baumannii for which survival times were determined under simulated hospital conditions. Despite a considerable reduction in the culturability over time (up to 88% depending on strain and the condition tested), some A. baumannii strains were able to maintain their ability to form biofilms after rehydration, addition of nutrients, and changing temperature. Also, after long-term desiccation, several clinical strains were able to grow in the presence of non-immune human serum as fine as their non-stressed homologs. Furthermore, we also show that the ability of bacterial strains to kill Galleria mellonella larvae does not change although A. baumannii cells were stressed by long-term starvation (up to 60 days). This means that A. baumannii can undergo a rapid adaptation to both the temperature shift and nutrients availability, conditions that can be easily found by bacteria in a new patient in the hospital setting.
Assuntos
Infecções por Acinetobacter/microbiologia , Acinetobacter baumannii/fisiologia , Fenômenos Fisiológicos da Nutrição , Infecções por Acinetobacter/imunologia , Acinetobacter baumannii/patogenicidade , Acinetobacter baumannii/ultraestrutura , Animais , Biofilmes , Modelos Animais de Doenças , Meio Ambiente , Interações Hospedeiro-Patógeno/imunologia , Humanos , Viabilidade Microbiana , Microscopia Confocal , VirulênciaRESUMO
High porosity and mass transport properties of microfiltration polymeric membranes benefit nutrients supply to cells when used as scaffolds in interstitial perfusion bioreactors for tissue engineering. High nutrients transport is assumed when pore size and porosity of the membrane are in the micrometric range. The present work demonstrates that the study of membrane fouling by proteins present in the culture medium, though not done usually, should be included in the routine testing of new polymer membranes for this intended application. Two poly(ε-caprolactone) microfiltration membranes presenting similar average pore size (approximately 0.7 µm) and porosity (>80%) but different external surface porosity and pore size have been selected as case studies. The present work demonstrates that a membrane with lower surface pore abundance and smaller external pore size (approximately 0.67 µm), combined with adequate hydrodynamics and tangential flow filtration mode is usually more convenient to guarantee high flux of nutrients. On the contrary, having large external pore size (approximately 1.70 µm) and surface porosity would incur important internal protein fouling that could not be prevented with the operation mode and hydrodynamics of the perfusion system. Additionally, the use of glycerol in the drying protocols of the membranes might cause plasticization and a consequent reduction of mass transport properties due to membrane compaction by the pressure exerted to force perfusion. Therefore, preferentially, drying protocols that omit the use of plasticizing agents are recommended.
RESUMO
Acinetobacter pittii strain HUMV-6483 was obtained from urine from an adult patient. We report here its complete genome assembly using PacBio single-molecule real-time sequencing, which resulted in a chromosome with 4.07 Mb and a circular contig of 112 kb. About 3,953 protein-coding genes are predicted from this assembly.
RESUMO
Acinetobacter baumannii is a common cause of health care associated infections worldwide. A. pittii is an opportunistic pathogen also frequently isolated from Acinetobacter infections other than those from A. baumannii. Knowledge of Acinetobacter virulence factors and their role in pathogenesis is scarce. Also, there are no detailed published reports on the interactions between A. pittii and human phagocytic cells. Using confocal laser and scanning electron microscopy, immunofluorescence, and live-cell imaging, our study shows that immediately after bacteria-cell contact, neutrophils rapidly and continuously engulf and kill bacteria during at least 4 hours of infection in vitro. After 3 h of infection, neutrophils start to release neutrophil extracellular traps (NETs) against Acinetobacter. DNA in NETs colocalizes well with human histone H3 and with the specific neutrophil elastase. We have observed that human neutrophils use large filopodia as cellular tentacles to sense local environment but also to detect and retain bacteria during phagocytosis. Furthermore, co-cultivation of neutrophils with human differentiated macrophages before infections shows that human neutrophils, but not macrophages, are key immune cells to control Acinetobacter. Although macrophages were largely activated by both bacterial species, they lack the phagocytic activity demonstrated by neutrophils.
Assuntos
Infecções por Acinetobacter/imunologia , Infecções por Acinetobacter/microbiologia , Acinetobacter baumannii/imunologia , Acinetobacter/imunologia , Neutrófilos/imunologia , Neutrófilos/microbiologia , Fagocitose/imunologia , Acinetobacter/ultraestrutura , Infecções por Acinetobacter/patologia , Acinetobacter baumannii/ultraestrutura , Armadilhas Extracelulares/imunologia , Armadilhas Extracelulares/metabolismo , Armadilhas Extracelulares/microbiologia , Humanos , Macrófagos/imunologia , Macrófagos/metabolismo , Macrófagos/microbiologia , Viabilidade Microbiana/imunologia , Neutrófilos/metabolismo , Imagem com Lapso de TempoRESUMO
Ceftaroline (CPT) is a novel cephalosporin with in vitro activity against Staphylococcus aureus. Ceftaroline exhibits a level of binding affinity for PBPs in S. aureus including PBP2a of methicillin-resistant S. aureus (MRSA). The aims of this study were to investigate the morphological, physiological and molecular responses of MRSA clinical strains and MRSA biofilms to sub-MICs (1/4 and 1/16 MIC) of ceftaroline by using transmission, scanning and confocal microscopy. We have also used quantitative Real-Time PCR to study the effect of sub-MICs of ceftaroline on the expression of the staphylococcal icaA, agrA, sarA and sasF genes in MRSA biofilms. In one set of experiments, ceftaroline was able to inhibit biofilm formation in all strains tested at MIC, however, a strain dependent behavior in presence of sub-MICs of ceftaroline was shown. In a second set of experiments, destruction of preformed biofilms by addition of ceftaroline was evaluated. Ceftaroline was able to inhibit biofilm formation at MIC in all strains tested but not at the sub-MICs. Destruction of preformed biofilms was strain dependent because the biofilm formed by a matrix-producing strain was resistant to a challenge with ceftaroline at MIC, whereas in other strains the biofilm was sensitive. At sub-MICs, the impact of ceftaroline on expression of virulence genes was strain-dependent at 1/4 MIC and no correlation between ceftaroline-enhanced biofilm formation and gene regulation was established at 1/16 MIC. Our findings suggest that sub-MICs of ceftaroline enhance bacterial attachment and biofilm formation by some, but not all, MRSA strains and, therefore, stress the importance of maintaining effective bactericidal concentrations of ceftaroline to fight biofilm-MRSA related infections.
Assuntos
Antibacterianos/farmacologia , Biofilmes/efeitos dos fármacos , Cefalosporinas/farmacologia , Staphylococcus aureus Resistente à Meticilina/efeitos dos fármacos , Testes de Sensibilidade Microbiana , CeftarolinaRESUMO
The molecular and genetic basis of Acinetobacter baumannii and Acinetobacter pittii virulence remains poorly understood, and there is still lack of knowledge in host cell response to these bacteria. In this study, we have used eleven clinical Acinetobacter strains (A. baumannii n = 5; A. pittii n = 6) to unravel bacterial adherence, invasion and cytotoxicity to human lung epithelial cells. Our results showed that adherence to epithelial cells by Acinetobacter strains is scarce and cellular invasion was not truly detected. In addition, all Acinetobacter strains failed to induce any cytotoxic effect on A549 cells.
Assuntos
Infecções por Acinetobacter/microbiologia , Acinetobacter/fisiologia , Aderência Bacteriana , Células Epiteliais/microbiologia , Pneumonia Bacteriana/microbiologia , Células A549 , Acinetobacter/isolamento & purificação , Sobrevivência Celular , Células Epiteliais/fisiologia , HumanosRESUMO
A clinical isolate of Hafnia alvei (strain HUMV-5920) was obtained from a urine sample from an adult patient. We report here its complete genome assembly using PacBio single-molecule real-time (SMRT) sequencing, which resulted in a chromosome with 4.5 Mb and a circular contig of 87 kb. About 4,146 protein-coding genes are predicted from this assembly.
RESUMO
A clinical isolate of Serratia liquefaciens (strain HUMV-21) was obtained from a skin ulcer of an adult patient. We report here its complete genome assembly using PacBio single-molecule real-time (SMRT) sequencing, which resulted in a single circular chromosome with 5.3 Mb. About 5,844 protein-coding genes are predicted from this assembly.