RESUMO
The critical importance of the start phase in bicycle motocross (BMX) racing is increasingly acknowledged. Past experiments underlined that the internal lane of the starting gate provides a strong positional advantage. However, how lane position affects start performance and cognitive and somatic state anxiety remains unexplored. We examined the start performance and anxiety responses of youth national-level BMX riders in both experimental and ecological contexts. We used contextualization motor imagery routines to evaluate start performance and state anxiety from the internal and external lanes. Cycle ergometer measures revealed a better start performance from the external lane, but we did not record any lane effect on actual gate start times. Both somatic and cognitive anxiety scores were higher before racing from the internal compared to the external lane. Finally, state anxiety (i.e., somatic anxiety, worry and concentration disruptions) negatively predicted the start performance. Present findings provide original insights on psychological factors involved in BMX start performance, and might contribute to fruitful coping interventions and training programmes in sports overlapping the framework of "handicap races" taking the specific form of positional advantages/disadvantages at the start (e.g., ski/snowboard cross, athletics, swimming, motorsports, etc.).
Assuntos
Ansiedade , Desempenho Atlético/psicologia , Ciclismo/psicologia , Comportamento Competitivo/fisiologia , Percepção , Adolescente , Atenção , Ciclismo/fisiologia , Feminino , Humanos , MasculinoRESUMO
The stimulation of naive donor T cells by recipient alloantigen is central to the pathogenesis of graft-versus-host disease after bone marrow transplantation (BMT). Using mouse models of transplantation, we have observed that donor cells become "cross-dressed" in very high levels of recipient hematopoietic cell-derived MHC class I and II molecules following BMT. Recipient-type MHC is transiently present on donor dendritic cells (DCs) after BMT in the setting of myeloablative conditioning but is persistent after nonmyeloablative conditioning, in which recipient hematopoietic cells remain in high numbers. Despite the high level of recipient-derived alloantigen present on the surface of donor DCs, donor T cell proliferative responses are generated only in response to processed recipient alloantigen presented via the indirect pathway and not in response to cross-dressed MHC. Assays in which exogenous peptide is added to cross-dressed MHC in the presence of naive TCR transgenic T cells specific to the MHC class II-peptide combination confirm that cross-dressed APC cannot induce T cell proliferation in isolation. Despite failure to induce T cell proliferation, cross-dressing by donor DCs contributes to generation of the immunological synapse between DCs and CD4 T cells, and this is required for maximal responses induced by classical indirectly presented alloantigen. We conclude that the process of cross-dressing by donor DCs serves as an efficient alternative pathway for the acquisition of recipient alloantigen and that once acquired, this cross-dressed MHC can assist in immune synapse formation prior to the induction of full T cell proliferative responses by concurrent indirect Ag presentation.
Assuntos
Apresentação de Antígeno , Antígenos/imunologia , Transplante de Medula Óssea , Linfócitos T CD4-Positivos/imunologia , Proliferação de Células , Células Dendríticas/imunologia , Sinapses Imunológicas/imunologia , Aloenxertos , Animais , Antígenos de Histocompatibilidade Classe II/imunologia , Camundongos , Camundongos Knockout , Peptídeos/imunologiaRESUMO
The majority of allogeneic stem cell transplants are currently undertaken using G-CSF mobilized peripheral blood stem cells. G-CSF has diverse biological effects on a broad range of cells and IL-10 is a key regulator of many of these effects. Using mixed radiation chimeras in which the hematopoietic or nonhematopoietic compartments were wild-type, IL-10(-/-), G-CSFR(-/-), or combinations thereof we demonstrated that the attenuation of alloreactive T cell responses after G-CSF mobilization required direct signaling of the T cell by both G-CSF and IL-10. IL-10 was generated principally by radio-resistant tissue, and was not required to be produced by T cells. G-CSF mobilization significantly modulated the transcription profile of CD4(+)CD25(+) regulatory T cells, promoted their expansion in the donor and recipient and their depletion significantly increased graft-versus-host disease (GVHD). In contrast, stem cell mobilization with the CXCR4 antagonist AMD3100 did not alter the donor T cell's ability to induce acute GVHD. These studies provide an explanation for the effects of G-CSF on T cell function and demonstrate that IL-10 is required to license regulatory function but T cell production of IL-10 is not itself required for the attenuation GVHD. Although administration of CXCR4 antagonists is an efficient means of stem cell mobilization, this fails to evoke the immunomodulatory effects seen during G-CSF mobilization. These data provide a compelling rationale for considering the immunological benefits of G-CSF in selecting mobilization protocols for allogeneic stem cell transplantation.
Assuntos
Fator Estimulador de Colônias de Granulócitos/imunologia , Mobilização de Células-Tronco Hematopoéticas/métodos , Interleucina-10/imunologia , Transdução de Sinais/imunologia , Linfócitos T/imunologia , Animais , Benzilaminas , Proliferação de Células/efeitos dos fármacos , Ciclamos , Citometria de Fluxo , Doença Enxerto-Hospedeiro/genética , Doença Enxerto-Hospedeiro/imunologia , Fator Estimulador de Colônias de Granulócitos/farmacologia , Compostos Heterocíclicos/imunologia , Compostos Heterocíclicos/farmacologia , Interleucina-10/genética , Interleucina-10/metabolismo , Estimativa de Kaplan-Meier , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Análise de Sequência com Séries de Oligonucleotídeos , Receptores CXCR4/antagonistas & inibidores , Receptores CXCR4/imunologia , Receptores CXCR4/metabolismo , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/genética , Transplante de Células-Tronco/métodos , Linfócitos T/metabolismo , Linfócitos T Reguladores/efeitos dos fármacos , Linfócitos T Reguladores/imunologia , Linfócitos T Reguladores/metabolismo , Transcriptoma/efeitos dos fármacos , Transcriptoma/imunologiaRESUMO
Allogeneic haematopoietic stem cell transplantation (HSCT) represents the only curative therapy for the majority of bone marrow-derived cancers. Unfortunately, HSCT can result in serious complications such as graft-versus-host disease, graft failure and infection. In the last decade, there have been major advances in the understanding of the role of autophagy in many diseases and cellular processes. Recent findings have demonstrated a crucial role for autophagy in haematopoietic stem cell survival and function, antigen presentation, T-cell differentiation and response to cytokine stimulation. Given the critical requirement for each of these processes in HSCT and subsequent complications, it is surprising that the contribution of autophagy to HSCT per se is relatively unexplored. In addition, the increasing use of autophagy-modulating drugs in the clinic further highlights the need to understand the role of autophagy in allogeneic HSCT. This review will cover established and implicated roles of autophagy in HSCT, suggesting this pathway as an important therapeutic target for improving transplant outcomes.
Assuntos
Autofagia/efeitos dos fármacos , Regulação Neoplásica da Expressão Gênica/imunologia , Doença Enxerto-Hospedeiro/prevenção & controle , Neoplasias Hematológicas/terapia , Transplante de Células-Tronco Hematopoéticas , Fatores Imunológicos/uso terapêutico , Apresentação de Antígeno/efeitos dos fármacos , Autofagia/genética , Autofagia/imunologia , Medula Óssea/efeitos dos fármacos , Medula Óssea/imunologia , Medula Óssea/patologia , Sobrevivência Celular , Células Dendríticas/efeitos dos fármacos , Células Dendríticas/imunologia , Células Dendríticas/patologia , Doença Enxerto-Hospedeiro/genética , Doença Enxerto-Hospedeiro/imunologia , Doença Enxerto-Hospedeiro/patologia , Neoplasias Hematológicas/genética , Neoplasias Hematológicas/imunologia , Neoplasias Hematológicas/patologia , Humanos , Transdução de Sinais , Linfócitos T/efeitos dos fármacos , Linfócitos T/imunologia , Linfócitos T/patologia , Transplante Homólogo , Enzimas de Conjugação de Ubiquitina/genética , Enzimas de Conjugação de Ubiquitina/imunologiaRESUMO
Donor T cells play pivotal roles in graft-versus-host disease (GVHD) and graft-versus-leukemia (GVL) effects following bone marrow transplantation (BMT). DNAX accessory molecule 1 (DNAM-1) is a costimulatory and adhesion molecule, expressed mainly by natural killer cells and CD8(+) T cells at steady state to promote adhesion to ligand-expressing targets and enhance cytolysis. We have analyzed the role of this pathway in GVHD and GVL. The absence of DNAM-1 on the donor graft attenuated GVHD in major histocompatibility complex (MHC)-mismatched and MHC-matched BMT following conditioning with lethal and sublethal irradiation. In contrast, DNAM-1 was not critical for GVL effects against ligand (CD155) expressing and nonexpressing leukemia. The effects on GVHD following myeloablative conditioning were independent of CD8(+) T cells and dependent on CD4(+) T cells, and specifically donor FoxP3(+) regulatory T cells (Treg). The absence of DNAM-1 promoted the expansion and suppressive function of Treg after BMT. These findings provide support for therapeutic DNAM-1 inhibition to promote tolerance in relevant inflammatory-based diseases characterized by T-cell activation.
Assuntos
Antígenos de Diferenciação de Linfócitos T/fisiologia , Transplante de Medula Óssea , Doença Enxerto-Hospedeiro/prevenção & controle , Efeito Enxerto vs Leucemia/imunologia , Leucemia Experimental/prevenção & controle , Linfócitos T Reguladores/imunologia , Animais , Antígenos de Diferenciação de Linfócitos T/química , Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD8-Positivos/imunologia , Citocinas/metabolismo , Feminino , Fatores de Transcrição Forkhead/metabolismo , Doença Enxerto-Hospedeiro/etiologia , Doença Enxerto-Hospedeiro/imunologia , Leucemia Experimental/etiologia , Leucemia Experimental/imunologia , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C3H , Camundongos Endogâmicos C57BL , Camundongos Knockout , Condicionamento Pré-Transplante , Células Tumorais Cultivadas , Irradiação Corporal TotalRESUMO
Natural regulatory T cells (nTregs) play an important role in tolerance; however, the small numbers of cells obtainable potentially limit the feasibility of clinical adoptive transfer. Therefore, we studied the feasibility and efficacy of using murine-induced regulatory T cells (iTregs) for the induction of tolerance after bone marrow transplantation. iTregs could be induced in large numbers from conventional donor CD4 and CD8 T cells within 1 wk and were highly suppressive. During graft-versus-host disease (GVHD), CD4 and CD8 iTregs suppressed the proliferation of effector T cells and the production of proinflammatory cytokines. However, unlike nTregs, both iTreg populations lost Foxp3 expression within 3 wk in vivo, reverted to effector T cells, and exacerbated GVHD. The loss of Foxp3 in iTregs followed homeostatic and/or alloantigen-driven proliferation and was unrelated to GVHD. However, the concurrent administration of rapamycin, with or without IL-2/anti-IL-2 Ab complexes, to the transplant recipients significantly improved Foxp3 stability in CD4 iTregs (and, to a lesser extent, CD8 iTregs), such that they remained detectable 12 wk after transfer. Strikingly, CD4, but not CD8, iTregs could then suppress Teff proliferation and proinflammatory cytokine production and prevent GVHD in an equivalent fashion to nTregs. However, at high numbers and when used as GVHD prophylaxis, Tregs potently suppress graft-versus-leukemia effects and so may be most appropriate as a therapeutic modality to treat GVHD. These data demonstrate that CD4 iTregs can be produced rapidly in large, clinically relevant numbers and, when transferred in the presence of systemic rapamycin and IL-2, induce tolerance in transplant recipients.
Assuntos
Doença Enxerto-Hospedeiro/imunologia , Tolerância Imunológica/imunologia , Interleucina-2/metabolismo , Sirolimo/metabolismo , Linfócitos T Reguladores/imunologia , Animais , Transplante de Medula Óssea , Linfócitos T CD8-Positivos/metabolismo , Diferenciação Celular/efeitos dos fármacos , Diferenciação Celular/imunologia , Proliferação de Células , Citocinas/biossíntese , Fatores de Transcrição Forkhead/metabolismo , Doença Enxerto-Hospedeiro/metabolismo , Doença Enxerto-Hospedeiro/prevenção & controle , Tolerância Imunológica/efeitos dos fármacos , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Linfócitos T Reguladores/efeitos dos fármacosRESUMO
The origins of autoimmunity are not yet understood despite significant advances in immunology. The trafficking of maternal cells to the offspring represents the very first immunological event in foetal life and is reinforced during lactation. The persistence of maternal cells in offspring's tissues and circulation has been associated with several autoimmune disorders. However a direct causal effect has never been demonstrated. Maternal T cells specifically targeting foetal insulin producing cells have been shown to generate islet inflammation without directly participating in this process. Our objective was to evaluate if alloreactive maternal cells could directly trigger a graft-versus host like reaction or indirectly influence the development of the offspring's regulatory T cells favouring autoimmunity. We adopted a breeding strategy comparing genetically identical offspring from either strongly alloreactive transgenic mothers compared to immunodeficient mothers. We detected maternal alloreactive T cells in the offspring and early signs of inflammation in small intestine of 6 weeks old offspring. Interestingly, CD4(+) Foxp3(+) regulatory T cell frequency was diminished in mesenteric lymph nodes from eight months old offspring born of alloreactive mothers compared to offspring of immunodeficient mothers. Our study favours a hypothesis where highly alloreactive maternal cell microchimerism indirectly predisposes offspring to autoimmunity.
Assuntos
Autoantígenos/imunologia , Autoimunidade , Quimerismo , Células Secretoras de Insulina/imunologia , Intestino Delgado/imunologia , Linfócitos T Reguladores/imunologia , Animais , Autoantígenos/genética , Cruzamentos Genéticos , Feminino , Feto , Expressão Gênica , Humanos , Inflamação/genética , Inflamação/imunologia , Inflamação/patologia , Células Secretoras de Insulina/patologia , Intestino Delgado/patologia , Masculino , Troca Materno-Fetal/imunologia , Camundongos , Mães , Gravidez , Linfócitos T Reguladores/patologiaRESUMO
Recent studies have suggested a close relationship between CD4(+)FOXP3(+) regulatory T cells (Tregs) and proinflammatory IL-17-producing T helper cells (T(H)17) expressing the lineage-specific transcription factor RORgamma t. We report here the unexpected finding that human memory Tregs secrete IL-17 ex vivo and constitutively express RORgamma t. IL-17-secreting Tregs share some phenotypic and functional features with conventional T(H)17 cells, expressing high levels of CCR4 and CCR6 and low levels of CXCR3. However, unlike conventional T(H)17 cells, they express low levels of CD161 and mostly fail to cosecrete IL-22 and TNF-alpha ex vivo. Ex vivo secretion of IL-17 and constitutive expression of RORgamma t by human memory Tregs suggest that, in addition to their well-known suppressive functions, these cells likely play additional, as yet undescribed, proinflammatory functions.
Assuntos
Linhagem da Célula/imunologia , Fatores de Transcrição Forkhead/imunologia , Memória Imunológica/imunologia , Interleucina-17/metabolismo , Receptores do Ácido Retinoico/imunologia , Receptores dos Hormônios Tireóideos/imunologia , Linfócitos T Auxiliares-Indutores/imunologia , Linfócitos T Reguladores/imunologia , Humanos , Interleucina-17/imunologia , Membro 3 do Grupo F da Subfamília 1 de Receptores Nucleares , Fenótipo , Linfócitos T Reguladores/metabolismoRESUMO
Healthcare professionals have been increasingly viewing medical images and videos in their routine clinical practice, and this in a wide variety of environments. Both the perception and interpretation of medical visual information, across all branches of practice or medical specialties (e.g. diagnostic, therapeutic, or surgical medicine), career stages, and practice settings (e.g. emergency care), appear to be critical for patient care. However, medical images and videos are not self-explanatory and, therefore, need to be interpreted by humans, i.e. medical experts. In addition, various types of degradations and artifacts may appear during image acquisition or processing, and consequently affect medical imaging data. Such distortions tend to impact viewers' quality of experience, as well as their clinical practice. It is accordingly essential to better understand how medical experts perceive the quality of visual content. Thankfully, progress has been made in the recent literature towards such understanding. In this article, we present an up-to-date state-of the-art of relatively recent (i.e. not older than ten years old) existing studies on the subjective quality assessment of medical images and videos, as well as research works using task-based approaches. Furthermore, we discuss the merits and drawbacks of the methodologies used, and we provide recommendations about experimental designs and statistical processes to evaluate the perception of medical images and videos for future studies, which could then be used to optimise the visual experience of image readers in real clinical practice. Finally, we tackle the issue of the lack of available annotated medical image and video quality databases, which appear to be indispensable for the development of new dedicated objective metrics.
Assuntos
Artefatos , Diagnóstico por Imagem , Criança , Bases de Dados Factuais , Humanos , RadiografiaRESUMO
OBJECTIVE: While complete remission in acute myeloid leukemia (AML) can be achieved after chemotherapy (CT), relapses occur for the majority of patients, underlying the need to eliminate residual disease. Based on dendritic cell (DC) vaccination, the triggering of an immune response against residual leukemia cells after CT could maintain patients in remission. The aim of our study was to assess, for vaccine preparation, generation of monocyte-derived DCs in AML patients after CT. MATERIALS AND METHODS: We evaluated efficiency of the production, yields, maturation, and functional properties of DCs from 22 AML patients at different CT stages compared to those from 15 healthy donors. RESULTS: We demonstrated that monocyte-derived DC production is successful later than 3 weeks after the last CT cycle, whatever the CT was. Immature DCs demonstrated functional phagocytic activity. Mature DCs displayed migratory, T-cell stimulatory and Th1-activation capacities. Our results also suggest a favorable period from 20 to 60 days after CT for potent monocyte-derived DC production and immune activation. CONCLUSION: In defining patient-sampling conditions, this preclinical study has direct implications for AML DC-based immunotherapy.
Assuntos
Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Vacinas Anticâncer/uso terapêutico , Células Dendríticas/citologia , Imunoterapia/métodos , Leucemia Mieloide Aguda/imunologia , Leucemia Mieloide Aguda/terapia , Leucócitos Mononucleares/citologia , Adulto , Idoso , Diferenciação Celular , Quimioterapia Adjuvante , Citocinas/metabolismo , Células Dendríticas/imunologia , Feminino , Humanos , Leucemia Mieloide Aguda/diagnóstico , Leucócitos Mononucleares/imunologia , Masculino , Pessoa de Meia-Idade , Receptores CCR7/biossíntese , Indução de Remissão , Fatores de Tempo , Transplante Autólogo , Resultado do TratamentoRESUMO
During gestation, maternal cells traffic to the fetus leading to the natural phenomenon of microchimerism. Although their persistence in offspring has been associated with several autoimmune disorders, the precise role of maternal cells in these disorders remains unclear. We aimed to evaluate whether alloreactive maternal T cells could directly trigger a graft-vs.-host like reaction or indirectly influence the development of the offspring's regulatory T cells (Treg) favoring autoimmunity. In a specific breeding strategy, we recently reported that maternal allogeneic T cells changed fetal Treg development and their quantities in mesenteric lymph nodes, leading to early signs of inflammation in the gut later in life. Although maternal microchimeric T cells were found in newborn tissues, we could not detect any cells in the gut from adult offspring where the inflammation occurred. Thus, strongly alloreactive maternal microchimeric T cells may indirectly drive the offspring to gut inflammation. We believe these results suggest a new mechanism for predisposition to auto-immunity.
Assuntos
Autoimunidade/genética , Quimerismo , Troca Materno-Fetal , Feminino , Humanos , Masculino , Modelos Imunológicos , Gravidez , Linfócitos T ReguladoresRESUMO
Chronic GVHD (cGVHD) is the major cause of late, nonrelapse death following stem cell transplantation and characteristically develops in organs such as skin and lung. Here, we used multiple murine models of cGVHD to investigate the contribution of macrophage populations in the development of cGVHD. Using an established IL-17-dependent sclerodermatous cGVHD model, we confirmed that macrophages infiltrating the skin are derived from donor bone marrow (F4/80+CSF-1R+CD206+iNOS-). Cutaneous cGVHD developed in a CSF-1/CSF-1R-dependent manner, as treatment of recipients after transplantation with CSF-1 exacerbated macrophage infiltration and cutaneous pathology. Additionally, recipients of grafts from Csf1r-/- mice had substantially less macrophage infiltration and cutaneous pathology as compared with those receiving wild-type grafts. Neither CCL2/CCR2 nor GM-CSF/GM-CSFR signaling pathways were required for macrophage infiltration or development of cGVHD. In a different cGVHD model, in which bronchiolitis obliterans is a prominent manifestation, F4/80+ macrophage infiltration was similarly noted in the lungs of recipients after transplantation, and lung cGVHD was also IL-17 and CSF-1/CSF-1R dependent. Importantly, depletion of macrophages using an anti-CSF-1R mAb markedly reduced cutaneous and pulmonary cGVHD. Taken together, these data indicate that donor macrophages mediate the development of cGVHD and suggest that targeting CSF-1 signaling after transplantation may prevent and treat cGVHD.
Assuntos
Doença Enxerto-Hospedeiro/patologia , Fator Estimulador de Colônias de Macrófagos/metabolismo , Macrófagos/citologia , Receptor de Fator Estimulador de Colônias de Macrófagos/metabolismo , Animais , Anticorpos Monoclonais/química , Separação Celular , Modelos Animais de Doenças , Feminino , Citometria de Fluxo , Interleucina-17/metabolismo , Pulmão/patologia , Pneumopatias/patologia , Fator Estimulador de Colônias de Macrófagos/genética , Macrófagos/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Monócitos/citologia , Receptor de Fator Estimulador de Colônias de Macrófagos/genética , Transdução de Sinais , Pele/patologia , Transplante de Células-TroncoRESUMO
Significant endeavor has been applied to identify functional therapeutic targets in glioblastoma (GBM) to halt the growth of this aggressive cancer. We show that the receptor tyrosine kinase EphA3 is frequently overexpressed in GBM and, in particular, in the most aggressive mesenchymal subtype. Importantly, EphA3 is highly expressed on the tumor-initiating cell population in glioma and appears critically involved in maintaining tumor cells in a less differentiated state by modulating mitogen-activated protein kinase signaling. EphA3 knockdown or depletion of EphA3-positive tumor cells reduced tumorigenic potential to a degree comparable to treatment with a therapeutic radiolabelled EphA3-specific monoclonal antibody. These results identify EphA3 as a functional, targetable receptor in GBM.
Assuntos
Neoplasias Encefálicas/prevenção & controle , Glioblastoma/prevenção & controle , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Células-Tronco Neoplásicas/patologia , Receptores Proteína Tirosina Quinases/metabolismo , Animais , Anticorpos Monoclonais/farmacologia , Apoptose , Western Blotting , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/patologia , Diferenciação Celular , Proliferação de Células , Citometria de Fluxo , Imunofluorescência , Glioblastoma/genética , Glioblastoma/patologia , Humanos , Imunoprecipitação , Camundongos , Camundongos Endogâmicos NOD , Camundongos SCID , RNA Interferente Pequeno/genética , Receptores Proteína Tirosina Quinases/antagonistas & inibidores , Receptores Proteína Tirosina Quinases/genética , Receptor EphA3 , Células Tumorais CultivadasRESUMO
The origins of autoimmunity are still elusive despite significant advances in immunology. There is cumulative evidence that, beyond simple genetics, the maternal environment plays a critical role in the development of common autoimmune disorders, such as multiple sclerosis or diabetes. In recent years, the trafficking of maternal cells to the offspring has been clearly demonstrated. This microchimerism represents the very first immunological event in fetal life. The number of persisting maternal cells has been associated with several autoimmune disorders such as systemic sclerosis, juvenile dermatomyositis and diabetes. The precise role of the maternal cells in these disorders remains unclear. Based on recent experimental work in an animal model of juvenile diabetes, we will discuss the possibility of maternal cells modifying the response of the developing fetal immunity towards self.
RESUMO
Epithelial ovarian cancer (EOC) is a highly inflammatory malignancy, characterized by the presence, at the tumor site, of regulatory T cells (Treg) that suppress antitumor immunity. Recently, a new lineage of CD4+ T cells producing the proinflammatory cytokine interleukin (IL)-17 [T helper (TH) 17] has been identified as a major player in some autoimmune diseases. The role of TH17 cells in cancer, however, and their relationship with coexisting Treg populations, whose differentiation is partially controlled by the same mediators (ie, transforming growth factor-beta), are yet unclear. Here, we show that EOC-associated/infiltrating lymphocytes derived by culturing tumor samples in the presence of IL-2 contain significant frequencies of TH17 cells, coproducing interferon-gamma (IFN)-gamma and tumor necrosis factor (TNF)-alpha, which represent, in some cases, up to 40% of total CD4+ T cells. TH17 cells were also detected ex vivo, but at lower proportions than in cultured tumor-infiltrating lymphocytes/tumor-associated lymphocytes, and were confined to the CD4+CD25- fraction. Remarkably, analysis of EOC-associated conventional CD4CD25 T cell and Treg populations isolated ex vivo from tumor samples by cell sorting and cultured with tumor-associated CD3- cells in the presence of IL-2 revealed that EOC Treg stimulated under these conditions were rapidly converted into TH17 cells, down-regulated FOXP3 expression, and lost their suppressive capacity. Thus, although the impact of TH17 cells on the evolution of EOC remains to be established, our data suggest that local IL-2 treatment in ovarian cancer may result in the conversion of tumor-associated Treg into TH17 cells, relieve Treg-mediated suppression, and contribute to enhance antitumor immunity.