RESUMO
This work aimed at testing the hypothesis that NOD/ShiLtJ mice (NOD) recapitulate the cardiac disturbances observed on type 1 diabetes (T1D). NOD mice were studied 4 weeks after the onset of hyperglycemia, and NOR/Lt mice matched as control. Cardiac function was evaluated by echocardiography and electrocardiography (ECG). Action potentials (AP) and Ca2+ transients were evaluated at whole heart level. Heart mitochondrial function was evaluated by high-resolution respirometry and H2O2 release. NOD mice presented a reduction in hearth weight. Mitochondrial oxygen fluxes and H2O2 release were similar between NOD and NOR mice. ECG revealed a QJ interval prolongation in NOD mice. Furthermore, AP duration at 30% of repolarization was increased, and it depicted slower Ca2+ transient kinetics. NOD mice presented greater number/severity of ventricular arrhythmias both in vivo and in vitro. In conclusion, NOD mice evoked cardiac electrical and calcium handling disturbances similar to the observed in T1D. Graphical Abstract .
Assuntos
Potenciais de Ação , Arritmias Cardíacas/etiologia , Glicemia/metabolismo , Sinalização do Cálcio , Diabetes Mellitus Tipo 1/complicações , Sistema de Condução Cardíaco/metabolismo , Frequência Cardíaca , Miócitos Cardíacos/metabolismo , Animais , Arritmias Cardíacas/metabolismo , Arritmias Cardíacas/fisiopatologia , Diabetes Mellitus Tipo 1/sangue , Modelos Animais de Doenças , Sistema de Condução Cardíaco/fisiopatologia , Cinética , Camundongos Endogâmicos NOD , Mitocôndrias Cardíacas/metabolismoRESUMO
In the heart, Ca2+ influx through L-type Ca2+ channels triggers Ca2+ release from the sarcoplasmic reticulum. In most mammals, this influx occurs during the ventricular action potential (AP) plateau phase 2. However, in murine models, the influx through L-type Ca2+ channels happens in early repolarizing phase 1. The aim of this work is to assess if changes in the open probability of 4-aminopyridine (4-AP)-sensitive Kv channels defining the outward K+ current during phase 1 can modulate Ca2+ currents, Ca2+ transients, and systolic pressure during the cardiac cycle in intact perfused beating hearts. Pulsed local-field fluorescence microscopy and loose-patch photolysis were used to test the hypothesis that a decrease in a transient K+ current (Ito) will enhance Ca2+ influx and promote a larger Ca2+ transient. Simultaneous recordings of Ca2+ transients and APs by pulsed local-field fluorescence microscopy and loose-patch photolysis showed that a reduction in the phase 1 repolarization rate increases the amplitude of Ca2+ transients due to an increase in Ca2+ influx through L-type Ca2+ channels. Moreover, 4-AP induced an increase in the time required for AP to reach 30% repolarization, and the amplitude of Ca2+ transients was larger in epicardium than endocardium. On the other hand, the activation of Ito with NS5806 resulted in a reduction of Ca2+ current amplitude that led to a reduction of the amplitude of Ca2+ transients. Finally, the 4-AP effect on AP phase 1 was significantly smaller when the L-type Ca2+ current was partially blocked with nifedipine, indicating that the phase 1 rate of repolarization is defined by the competition between an outward K+ current and an inward Ca2+ current.