Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Environ Sci Technol ; 51(19): 11468-11475, 2017 Oct 03.
Artigo em Inglês | MEDLINE | ID: mdl-28836769

RESUMO

Modern cities and societies are built fundamentally based on cement and concrete. The global cement production has risen sharply in the past decades due largely to urbanization and construction. Here we deployed a top-down dynamic material flow analysis (MFA) model to quantify the historical development of cement in-use stocks in residential, nonresidential, and civil engineering sectors of all world countries. We found that global cement production spreads unevenly among 184 countries, with China dominating the global production and consumption after the 1990s. Nearly all countries have shown an increasing trend of per capita cement in-use stock in the past century. The present per capita cement in-use stocks vary from 10 to 40 tonnes in major industrialized and transiting countries and are below 10 tonnes in developing countries. Evolutionary modes identified from historical patterns suggest that per capita in-use cement stock growth generally complies with an S-shape curve and relates closely to affluence and urbanization of a country, but more in-depth and bottom-up investigations are needed to better understand socioeconomic drivers behind stock growth. These identified in-use stock patterns can help us better estimate future demand of cement, explore strategies for emissions reduction in the cement industry, and inform CO2 uptake potentials of cement based products and infrastructure in service.


Assuntos
Dióxido de Carbono , Países em Desenvolvimento , Urbanização , China , Cidades , Indústrias
2.
Environ Sci Technol ; 51(3): 1129-1139, 2017 02 07.
Artigo em Inglês | MEDLINE | ID: mdl-28099815

RESUMO

One of the major applications of critical metals (CMs) is in electrical and electronic equipment (EEE), which is increasingly embedded in other products, notably passenger vehicles. However, recycling strategies for future CM quantities in end-of-life vehicles (ELVs) are poorly understood, mainly due to a limited understating of the complexity of automotive embedded EEE. We introduce a harmonization of the network structure of automotive electronics that enables a comprehensive quantification of CMs in all embedded EEE in a vehicle. This network is combined with a material flow analysis along the vehicle lifecycle in Switzerland to quantify the stocks and flows of Ag, Au, Pd, Ru, Dy, La, Nd, and Co in automotive embedded EEE. In vehicles in use, we calculated 5-2+3 t precious metals in controllers embedded in all vehicle types and 220-60+90 t rare earth elements (REE); found mainly in five electric motors: alternator, starter, radiator-fan and electronic power steering motor embedded in conventional passenger vehicles and drive motor/generator embedded in hybrid and electric vehicles. Dismantling these devices before ELV shredding, as well as postshredder treatment of automobile shredder residue may increase the recovery of CMs from ELVs. Environmental and economic implications of such recycling strategies must be considered.


Assuntos
Metais , Reciclagem/economia , Automóveis , Eletrônica , Meio Ambiente
3.
Environ Sci Technol ; 50(16): 8453-61, 2016 08 16.
Artigo em Inglês | MEDLINE | ID: mdl-27400378

RESUMO

Future availability of byproduct metals is not limited by geological stocks, but by the rate of primary production of their carrier metals, which in turn depends on the development of their in-use stocks, the product lifetimes, and the recycling rates. This linkage, while recognized conceptually in past studies, has not been adequately taken into account in resource availability estimates. Here, we determine the global supply potential for gallium up to 2050 based on scenarios for the global aluminum cycle, and compare it with scenarios for gallium demand derived from a dynamic model of the gallium cycle. We found that the gallium supply potential is heavily influenced by the development of the in-use stocks and recycling rates of aluminum. With current applications, a shortage of gallium is unlikely by 2050. However, the gallium industry may need to introduce ambitious recycling- and material efficiency strategies to meet its demand. If in-use stocks of aluminum saturate or decline, a shift to other gallium sources such as zinc or coal fly ash may be required.


Assuntos
Alumínio/provisão & distribuição , Gálio/provisão & distribuição , Reciclagem , Indústrias , Modelos Teóricos
4.
Environ Sci Technol ; 49(9): 5704-12, 2015 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-25884251

RESUMO

Gallium has been labeled as a critical metal due to rapidly growing consumption, importance for low-carbon technologies such as solid state lighting and photovoltaics, and being produced only as a byproduct of other metals (mainly aluminum). The global system of primary production, manufacturing, use and recycling has not yet been described or quantified in the literature. This prevents predictions of future demand, supply and possibilities for efficiency improvements on a system level. We present a description of the global anthropogenic gallium system and quantify the system using a combination of statistical data and technical parameters. We estimated that gallium was produced from 8 to 21% of alumina plants in 2011. The most important applications of gallium are NdFeB permanent magnets, integrated circuits and GaAs/GaP-based light-emitting diodes, demanding 22-37%, 16-27%, and 11-21% of primary metal production, respectively. GaN-based light-emitting diodes and photovoltaics are less important, both with 2-6%. We estimated that 120-170 tons, corresponding to 40-60% of primary production, ended up in production wastes that were either disposed of or stored. While demand for gallium is expected to rise in the future, our results indicated that it is possible to increase primary production substantially with conventional technology, as well as improve the system-wide material efficiency.


Assuntos
Gálio/química , Atividades Humanas , Arsenicais/química , Simulação por Computador , Humanos , Método de Monte Carlo , Probabilidade , Incerteza
5.
Environ Sci Technol ; 48(8): 4257-65, 2014 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-24655476

RESUMO

Aluminum recycling currently occurs in a cascading fashion, where some alloys, used in a limited number of applications, absorb most of the end-of-life scrap. An expected increase in scrap supply in coming decades necessitates restructuring of the aluminum cycle to open up new recycling paths for alloys and avoid a potential scrap surplus. This paper explores various interventions in end-of-life management and recycling of automotive aluminum, using a dynamic substance flow analysis model of aluminum and its alloying elements with resolution on component and alloy level (vehicle-component-alloy-element model). It was found that increased component dismantling before vehicle shredding can be an effective, so far underestimated, intervention in the medium term, especially if combined with development of safety-relevant components such as wheels from secondary material. In the long term, automatic alloy sorting technologies are most likely required, but could at the same time reduce the need for magnesium removal in refining. Cooperation between the primary and secondary aluminum industries, the automotive industry, and end-of-life vehicle dismantlers is therefore essential to ensure continued recycling of automotive aluminum and its alloying elements.


Assuntos
Ligas/análise , Alumínio/análise , Automóveis , Reciclagem , Simulação por Computador , Fatores de Tempo
6.
Environ Sci Technol ; 48(18): 10776-84, 2014 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-25111289

RESUMO

Light-weighting of passenger cars using high-strength steel or aluminum is a common emissions mitigation strategy. We provide a first estimate of the global impact of light-weighting by material substitution on GHG emissions from passenger cars and the steel and aluminum industries until 2050. We develop a dynamic stock model of the global car fleet and combine it with a dynamic MFA of the associated steel, aluminum, and energy supply industries. We propose four scenarios for substitution of conventional steel with high-strength steel and aluminum at different rates over the period 2010-2050. We show that light-weighting of passenger cars can become a "gigaton solution": Between 2010 and 2050, persistent light-weighting of passenger cars can, under optimal conditions, lead to cumulative GHG emissions savings of 9-18 gigatons CO2-eq compared to development business-as-usual. Annual savings can be up to 1 gigaton per year. After 2030, enhanced material recycling can lead to further reductions: closed-loop metal recycling in the automotive sector may reduce cumulative emissions by another 4-6 gigatons CO2-eq. The effectiveness of emissions mitigation by material substitution significantly depends on how the recycling system evolves. At present, policies focusing on tailpipe emissions and life cycle assessments of individual cars do not consider this important effect.


Assuntos
Alumínio , Automóveis , Carbono/análise , Indústrias , Internacionalidade , Aço , Poluentes Atmosféricos/análise , Pegada de Carbono , Gasolina/análise , Efeito Estufa , Modelos Teóricos , Reciclagem
7.
Environ Sci Technol ; 47(20): 11739-46, 2013 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-24053762

RESUMO

Identifying strategies for reconciling human development and climate change mitigation requires an adequate understanding of how infrastructures contribute to well-being and greenhouse gas emissions. While direct emissions from infrastructure use are well-known, information about indirect emissions from their construction is highly fragmented. Here, we estimated the carbon footprint of the existing global infrastructure stock in 2008, assuming current technologies, to be 122 (-20/+15) Gt CO2. The average per-capita carbon footprint of infrastructures in industrialized countries (53 (± 6) t CO2) was approximately 5 times larger that that of developing countries (10 (± 1) t CO2). A globalization of Western infrastructure stocks using current technologies would cause approximately 350 Gt CO2 from materials production, which corresponds to about 35-60% of the remaining carbon budget available until 2050 if the average temperature increase is to be limited to 2 °C, and could thus compromise the 2 °C target. A promising but poorly explored mitigation option is to build new settlements using less emissions-intensive materials, for example by urban design; however, this strategy is constrained by a lack of bottom-up data on material stocks in infrastructures. Infrastructure development must be considered in post-Kyoto climate change agreements if developing countries are to participate on a fair basis.


Assuntos
Poluentes Atmosféricos/análise , Carbono/análise , Arquitetura de Instituições de Saúde , Dióxido de Carbono/análise , Cidades , Materiais de Construção , Combustíveis Fósseis/análise , Produto Interno Bruto , Humanos
8.
Waste Manag ; 92: 124-136, 2019 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-31160021

RESUMO

Printed circuit boards (PCB) are an essential component of electrical and electronic equipment (EEE) and account for roughly 5% of the mass of EEE. Knowledge about the chemical composition of PCB is crucial to enable an enhanced recycling, especially for elements considered critical regarding their economic importance and supply risk (e.g. precious metals or specialty metals such as tantalum, germanium, gallium). No standard reference methods exist for determining the chemical composition of PCB. Previously published element mass fractions cover a wide range and were produced with numerous methods for sample preparation, digestion, and measurement. This impedes comparability of PCB composition from different studies. To investigate sample- and element-specific effects of applied methods a PCB sample from desktop PC was analysed in two separate labs. One lab applied sample- and element-specific validated methods (aqua regia, HF, H2SO4 blend; ICP-OES, QQQ-ICP-MS), providing reference values, the other applied routine in-house methods (aqua regia; ICP-OES, ICP-MS) to assess the validity of in-house methods for chemical analysis of PCB. A t-test was used to identify elements depicting significant differences between validated and in-house methods. For base metals, in-house methods led to comparable results. For precious, specialty, and hazardous metals as well as REE investigated in this study, significant differences were detected. With respect to all results for in-house methods in this study, the combination of aqua regia and ICP-OES led to less significant differences than aqua regia and ICP-MS. The results show that sample- and element-specific quality assurance is crucial to prevent analytical bias.


Assuntos
Metais , Reciclagem , Eletrônica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA