Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 39
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 117(33): 20223-20234, 2020 08 18.
Artigo em Inglês | MEDLINE | ID: mdl-32759215

RESUMO

Nano-sized archaeota, with their small genomes and limited metabolic capabilities, are known to associate with other microbes, thereby compensating for their own auxotrophies. These diminutive and yet ubiquitous organisms thrive in hypersaline habitats that they share with haloarchaea. Here, we reveal the genetic and physiological nature of a nanohaloarchaeon-haloarchaeon association, with both microbes obtained from a solar saltern and reproducibly cultivated together in vitro. The nanohaloarchaeon Candidatus Nanohalobium constans LC1Nh is an aerotolerant, sugar-fermenting anaerobe, lacking key anabolic machinery and respiratory complexes. The nanohaloarchaeon cells are found physically connected to the chitinolytic haloarchaeon Halomicrobium sp. LC1Hm. Our experiments revealed that this haloarchaeon can hydrolyze chitin outside the cell (to produce the monosaccharide N-acetylglucosamine), using this beta-glucan to obtain carbon and energy for growth. However, LC1Hm could not metabolize either glycogen or starch (both alpha-glucans) or other polysaccharides tested. Remarkably, the nanohaloarchaeon's ability to hydrolyze glycogen and starch to glucose enabled growth of Halomicrobium sp. LC1Hm in the absence of a chitin. These findings indicated that the nanohaloarchaeon-haloarchaeon association is both mutualistic and symbiotic; in this case, each microbe relies on its partner's ability to degrade different polysaccharides. This suggests, in turn, that other nano-sized archaeota may also be beneficial for their hosts. Given that availability of carbon substrates can vary both spatially and temporarily, the susceptibility of Halomicrobium to colonization by Ca Nanohalobium can be interpreted as a strategy to maximize the long-term fitness of the host.


Assuntos
Halobacteriaceae/fisiologia , Nanoarchaeota/fisiologia , Polissacarídeos/metabolismo , Simbiose/fisiologia , Proteínas Arqueais/genética , Proteínas Arqueais/metabolismo , Técnicas de Cocultura , Regulação da Expressão Gênica em Archaea , Genoma Arqueal , Genômica , Filogenia
2.
Environ Microbiol ; 23(7): 3789-3808, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33538376

RESUMO

Archaea are environmentally ubiquitous on Earth, and their extremophilic and metabolically versatile phenotypes make them useful as model systems for astrobiology. Here, we reveal a new functional group of halo(natrono)archaea able to utilize alpha-d-glucans (amylopectin, amylose and glycogen), sugars, and glycerol as electron donors and carbon sources for sulfur respiration. They are facultative anaerobes enriched from hypersaline sediments with either amylopectin, glucose or glycerol as electron/carbon sources and elemental sulfur as the terminal electron acceptor. They include 10 strains of neutrophilic haloarchaea from circum pH-neutral lakes and one natronoarchaeon from soda-lake sediments. The neutrophilic isolates can grow by fermentation, although addition of S0 or dimethyl sulfoxide increased growth rate and biomass yield (with a concomitant decrease in H2 ). Natronoarchaeal isolate AArc-S grew only by respiration, either anaerobically with S0 or thiosulfate as the terminal electron acceptor, or aerobically. Through genome analysis of five representative strains, we detected the full set of enzymes required for the observed catabolic and respiratory phenotypes. These findings provide evidence that sulfur-respiring haloarchaea partake in biogeochemical sulfur cycling, linked to terminal anaerobic carbon mineralization in hypersaline anoxic habitats. We discuss the implications for life detection in analogue environments such as the polar subglacial brine-lakes of Mars.


Assuntos
Álcalis , Archaea , Carboidratos , Filogenia , Respiração , Enxofre
3.
Mar Drugs ; 18(12)2020 Nov 26.
Artigo em Inglês | MEDLINE | ID: mdl-33255932

RESUMO

Gram-negative Antarctic bacteria adopt survival strategies to live and proliferate in an extremely cold environment. Unusual chemical modifications of the lipopolysaccharide (LPS) and the main component of their outer membrane are among the tricks adopted to allow the maintenance of an optimum membrane fluidity even at particularly low temperatures. In particular, the LPS' glycolipid moiety, the lipid A, typically undergoes several structural modifications comprising desaturation of the acyl chains, reduction in their length and increase in their branching. The investigation of the structure of the lipid A from cold-adapted bacteria is, therefore, crucial to understand the mechanisms underlying the cold adaptation phenomenon. Here we describe the structural elucidation of the highly heterogenous lipid A from three psychrophiles isolated from Terra Nova Bay, Antarctica. All the lipid A structures have been determined by merging data that was attained from the compositional analysis with information from a matrix-assisted laser desorption ionization (MALDI) time of flight (TOF) mass spectrometry (MS) and MS2 investigation. As lipid A is also involved in a structure-dependent elicitation of innate immune response in mammals, the structural characterization of lipid A from such extremophile bacteria is also of great interest from the perspective of drug synthesis and development inspired by natural sources.


Assuntos
Temperatura Baixa , Bactérias Aeróbias Gram-Negativas/metabolismo , Lipídeo A/química , Termotolerância , Regiões Antárticas , Gelo , Lipídeo A/isolamento & purificação , Estrutura Molecular , Água do Mar/microbiologia , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz , Microbiologia da Água
4.
Environ Microbiol ; 17(2): 364-82, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25622758

RESUMO

Within the complex of deep, hypersaline anoxic lakes (DHALs) of the Mediterranean Ridge, we identified a new, unexplored DHAL and named it 'Lake Kryos' after a nearby depression. This lake is filled with magnesium chloride (MgCl2 )-rich, athalassohaline brine (salinity > 470 practical salinity units), presumably formed by the dissolution of Messinian bischofite. Compared with the DHAL Discovery, it contains elevated concentrations of kosmotropic sodium and sulfate ions, which are capable of reducing the net chaotropicily of MgCl2 -rich solutions. The brine of Lake Kryos may therefore be biologically permissive at MgCl2 concentrations previously considered incompatible with life. We characterized the microbiology of the seawater-Kryos brine interface and managed to recover mRNA from the 2.27-3.03 M MgCl2 layer (equivalent to 0.747-0.631 water activity), thereby expanding the established chaotropicity window-for-life. The primary bacterial taxa present there were Kebrit Deep Bacteria 1 candidate division and DHAL-specific group of organisms, distantly related to Desulfohalobium. Two euryarchaeal candidate divisions, Mediterranean Sea Brine Lakes group 1 and halophilic cluster 1, accounted for > 85% of the rRNA-containing archaeal clones derived from the 2.27-3.03 M MgCl2 layer, but were minority community-members in the overlying interface-layers. These findings shed light on the plausibility of life in highly chaotropic environments, geochemical windows for microbial extremophiles, and have implications for habitability elsewhere in the Solar System.


Assuntos
Archaea/genética , Bactérias/genética , Lagos/microbiologia , Consórcios Microbianos/fisiologia , Água do Mar/microbiologia , Archaea/classificação , Archaea/metabolismo , Bactérias/classificação , Bactérias/metabolismo , Mar Mediterrâneo , Filogenia , RNA Mensageiro/genética , RNA Ribossômico 16S/genética , Salinidade , Sais/análise , Cloreto de Sódio/análise , Microbiologia da Água
5.
Environ Microbiol ; 17(2): 332-45, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25330254

RESUMO

The present study provides a deeper view of protein functionality as a function of temperature, salt and pressure in deep-sea habitats. A set of eight different enzymes from five distinct deep-sea (3040-4908 m depth), moderately warm (14.0-16.5°C) biotopes, characterized by a wide range of salinities (39-348 practical salinity units), were investigated for this purpose. An enzyme from a 'superficial' marine hydrothermal habitat (65°C) was isolated and characterized for comparative purposes. We report here the first experimental evidence suggesting that in salt-saturated deep-sea habitats, the adaptation to high pressure is linked to high thermal resistance (P value = 0.0036). Salinity might therefore increase the temperature window for enzyme activity, and possibly microbial growth, in deep-sea habitats. As an example, Lake Medee, the largest hypersaline deep-sea anoxic lake of the Eastern Mediterranean Sea, where the water temperature is never higher than 16°C, was shown to contain halopiezophilic-like enzymes that are most active at 70°C and with denaturing temperatures of 71.4°C. The determination of the crystal structures of five proteins revealed unknown molecular mechanisms involved in protein adaptation to poly-extremes as well as distinct active site architectures and substrate preferences relative to other structurally characterized enzymes.


Assuntos
Aclimatação , Organismos Aquáticos/enzimologia , Bactérias/enzimologia , Pressão Hidrostática , Água do Mar/microbiologia , Adaptação Fisiológica , Ecossistema , Lagos , Mar Mediterrâneo , Salinidade , Sais
6.
Antonie Van Leeuwenhoek ; 107(2): 633-42, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25524421

RESUMO

Three strains designated 221-F1(T), 221-F2 and 3030-F1 were isolated from the Matapan Vavilov Deep canyon, also known as Calypso Deep in the Eastern Mediterranean Sea, at a depth of 4,908 m. Based on 16S rRNA gene sequence analysis these strains were found to be most closely related to Palleronia marisminoris and Hwanghaeicola aestuarii, with 16S rRNA gene pairwise sequence similarity of 95.3 and 94.7 % respectively, belonging to the family Rhodobacteraceae. The strains were observed to be red-pigmented and to form non-motile cocci or pleomorphic cells. The cells were found to stain Gram-negative, to be strictly aerobic, oxidase and catalase positive. Strains 221-F1(T), 221-F2 and 3030-F1 were found to be mesophilic and to grow in medium containing up to 13 % NaCl. The major polar lipids of the three strains were identified as diphosphatidylglycerol, phosphatidylglycerol, phosphatidylcholine, an unidentified glycolipid and an unidentified aminolipid. Ubiquinone 10 (U-10) was found to be the major respiratory quinone. The DNA G+C content of strain 221-F1(T) was determined to be 64.7 mol%. Based on phylogenetic, physiological and biochemical characteristics we describe a new species represented by strain 221-F1(T) (=CECT 8504(T) = LMG 27977(T)) for which we propose the name Palleronia abyssalis sp. nov. We also propose to emend the description of the genus Palleronia and the species P. marisminoris to reflect new results obtained in this study.


Assuntos
Rhodobacteraceae/classificação , Rhodobacteraceae/isolamento & purificação , Água do Mar/microbiologia , Aerobiose , Composição de Bases , Catalase/análise , Análise por Conglomerados , Citosol/química , DNA Bacteriano/química , DNA Bacteriano/genética , DNA Ribossômico/química , DNA Ribossômico/genética , Glicolipídeos/análise , Locomoção , Mar Mediterrâneo , Dados de Sequência Molecular , Oxirredutases/análise , Fosfolipídeos/análise , Filogenia , Pigmentos Biológicos/análise , Quinonas/análise , RNA Ribossômico 16S/genética , Rhodobacteraceae/genética , Análise de Sequência de DNA , Cloreto de Sódio/metabolismo
7.
Environ Microbiol ; 16(8): 2525-37, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24428220

RESUMO

Euryarchaea from the genus Halorhabdus have been found in hypersaline habitats worldwide, yet are represented by only two isolates: Halorhabdus utahensis AX-2(T) from the shallow Great Salt Lake of Utah, and Halorhabdus tiamatea SARL4B(T) from the Shaban deep-sea hypersaline anoxic lake (DHAL) in the Red Sea. We sequenced the H. tiamatea genome to elucidate its niche adaptations. Among sequenced archaea, H. tiamatea features the highest number of glycoside hydrolases, the majority of which were expressed in proteome experiments. Annotations and glycosidase activity measurements suggested an adaptation towards recalcitrant algal and plant-derived hemicelluloses. Glycosidase activities were higher at 2% than at 0% or 5% oxygen, supporting a preference for low-oxygen conditions. Likewise, proteomics indicated quinone-mediated electron transport at 2% oxygen, but a notable stress response at 5% oxygen. Halorhabdus tiamatea furthermore encodes proteins characteristic for thermophiles and light-dependent enzymes (e.g. bacteriorhodopsin), suggesting that H. tiamatea evolution was mostly not governed by a cold, dark, anoxic deep-sea habitat. Using enrichment and metagenomics, we could demonstrate presence of similar glycoside hydrolase-rich Halorhabdus members in the Mediterranean DHAL Medee, which supports that Halorhabdus species can occupy a distinct niche as polysaccharide degraders in hypersaline environments.


Assuntos
Genoma Arqueal , Halobacteriaceae/genética , Metagenômica , Polissacarídeos/metabolismo , Tolerância ao Sal/genética , Microbiologia da Água , Adaptação Fisiológica , Anaerobiose/fisiologia , Evolução Biológica , Ecossistema , Ensaios Enzimáticos , Glicosídeo Hidrolases/genética , Glicosídeo Hidrolases/metabolismo , Halobacteriaceae/classificação , Halobacteriaceae/enzimologia , Oceano Índico , Lagos/microbiologia , Oxigênio/metabolismo , Oxigênio/farmacologia , Filogenia , Cloreto de Sódio , Utah
8.
Environ Microbiol Rep ; 16(2): e13258, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38589217

RESUMO

DNA methylation serves a variety of functions across all life domains. In this study, we investigated archaeal methylomics within a tripartite xylanolytic halophilic consortium. This consortium includes Haloferax lucertense SVX82, Halorhabdus sp. SVX81, and an ectosymbiotic Candidatus Nanohalococcus occultus SVXNc, a nano-sized archaeon from the DPANN superphylum. We utilized PacBio SMRT and Illumina cDNA sequencing to analyse samples from consortia of different compositions for methylomics and transcriptomics. Endogenous cTAG methylation, typical of Haloferax, was accompanied in this strain by methylation at four other motifs, including GDGcHC methylation, which is specific to the ectosymbiont. Our analysis of the distribution of methylated and unmethylated motifs suggests that autochthonous cTAG methylation may influence gene regulation. The frequency of GRAGAaG methylation increased in highly expressed genes, while CcTTG and GTCGaGG methylation could be linked to restriction-modification (RM) activity. Generally, the RM activity might have been reduced during the evolution of this archaeon to balance the protection of cells from intruders, the reduction of DNA damage due to self-restriction in stressful environments, and the benefits of DNA exchange under extreme conditions. Our methylomics, transcriptomics and complementary electron cryotomography (cryo-ET) data suggest that the nanohaloarchaeon exports its methyltransferase to methylate the Haloferax genome, unveiling a new aspect of the interaction between the symbiont and its host.


Assuntos
Archaea , Metilação de DNA , Archaea/genética , Perfilação da Expressão Gênica , Expressão Gênica , Metiltransferases/genética , DNA Arqueal/genética
9.
Environ Microbiol ; 15(1): 167-82, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-22827264

RESUMO

The marine pelagic zone situated > 200 m below the sea level (bls) is the largest marine subsystem, comprising more than two-thirds of the oceanic volume. At the same time, it is one of the least explored ecosystems on Earth. Few large-scale environmental genomics studies have been undertaken to examine the phylogenetic diversity and functional gene repertoire of planktonic microbes present in mesopelagic and bathypelagic environments. Here, we present the description of the deep-sea microbial community thriving at > 4900 m depth in Matapan-Vavilov Deep (MVD). This canyon is the deepest site of Mediterranean Sea, with a deepest point located at approximately 5270 m, 56 km SW of city Pylos (Greece) in the Ionian Sea (36°34.00N, 21°07.44E). Comparative analysis of whole-metagenomic data revealed that unlike other deep-sea metagenomes, the prokaryotic diversity in MVD was extremely poor. The decline in the dark primary production rates, measured at 4908 m depth, was coincident with overwhelming dominance of copiotrophic Alteromonas macleodii'deep-ecotype' AltDE at the expense of other prokaryotes including those potentially involved in both autotrophic and anaplerotic CO(2) fixation. We also demonstrate the occurrence in deep-sea metagenomes of several clustered regularly interspaced short palindromic repeats systems.


Assuntos
Alteromonas/genética , Archaea/genética , Biodiversidade , Microbiologia Ambiental , Metagenoma , Metagenômica , Alteromonas/classificação , Alteromonas/enzimologia , Archaea/classificação , Archaea/enzimologia , Processos Autotróficos , Ecossistema , Grécia , Mar Mediterrâneo , Oceanos e Mares , Filogenia , Água do Mar/microbiologia , Vírus/classificação , Vírus/genética
10.
Environ Microbiol ; 15(6): 1717-33, 2013 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-23253149

RESUMO

We used a combination of molecular and microbiological approaches to determine the activity, abundance and diversity of archaeal populations inhabiting meromictic saline Lake Faro (Messina, Italy). Analysis of archaeal 16S rRNA, amoA, accA and hbd genes and transcripts revealed that sub- and anoxic layers of Lake Faro are primarily inhabited by the organisms related to the clusters of Marine Group I.1a of Thaumarchaeota frequently recovered from oxygen-depleted marine ecosystems. These organisms dominated the metabolically active archaea down to the bottom of the lake, indicating their adaptation to recurrent changes in the levels of water column hypoxia. The upper microaerobic layer of Lake Faro redoxcline has the maximal rates of dark primary production much lower than those of other previously studied pelagic redoxclines, but comparable to the values of meso- and bathypelagic areas of Mediterranean Sea. Application of bacterial inhibitors, especially azide, significantly declined the CO2 fixation rates in the low interface and monimolimnion, whereas archaea-specific inhibitor had effect only in upper part of the redoxcline. Based on these findings, we hypothesize that dark bicarbonate fixation in suboxic zone of Lake Faro results mainly from archaeal activity which is affected by the predicted lack in oxygen in lower layers.


Assuntos
Archaea/metabolismo , Ecossistema , Lagos/microbiologia , Salinidade , Anaerobiose , Archaea/classificação , Archaea/genética , Biodiversidade , Dióxido de Carbono/metabolismo , Microbiologia Ambiental , Genes Arqueais/genética , Itália , Mar Mediterrâneo , Dados de Sequência Molecular , Oxigênio/química , Filogenia , RNA Ribossômico 16S/genética
11.
Front Microbiol ; 14: 1182464, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37323909

RESUMO

Extremely halophilic representatives of the phylum Candidatus Nanohaloarchaeota (members of the DPANN superphyla) are obligately associated with extremely halophilic archaea of the phylum Halobacteriota (according to the GTDB taxonomy). Using culture-independent molecular techniques, their presence in various hypersaline ecosystems around the world has been confirmed over the past decade. However, the vast majority of nanohaloarchaea remain uncultivated, and thus their metabolic capabilities and ecophysiology are currently poorly understood. Using the (meta)genomic, transcriptomic, and DNA methylome platforms, the metabolism and functional prediction of the ecophysiology of two novel extremely halophilic symbiotic nanohaloarchaea (Ca. Nanohalococcus occultus and Ca. Nanohalovita haloferacivicina) stably cultivated in the laboratory as members of a xylose-degrading binary culture with a haloarchaeal host, Haloferax lucentense, was determined. Like all known DPANN superphylum nanoorganisms, these new sugar-fermenting nanohaloarchaea lack many fundamental biosynthetic repertoires, making them exclusively dependent on their respective host for survival. In addition, given the cultivability of the new nanohaloarchaea, we managed to discover many unique features in these new organisms that have never been observed in nano-sized archaea both within the phylum Ca. Nanohaloarchaeota and the entire superphylum DPANN. This includes the analysis of the expression of organism-specific non-coding regulatory (nc)RNAs (with an elucidation of their 2D-secondary structures) as well as profiling of DNA methylation. While some ncRNA molecules have been predicted with high confidence as RNAs of an archaeal signal recognition particle involved in delaying protein translation, others resemble the structure of ribosome-associated ncRNAs, although none belong to any known family. Moreover, the new nanohaloarchaea have very complex cellular defense mechanisms. In addition to the defense mechanism provided by the type II restriction-modification system, consisting of Dcm-like DNA methyltransferase and Mrr restriction endonuclease, Ca. Nanohalococcus encodes an active type I-D CRISPR/Cas system, containing 77 spacers divided into two loci. Despite their diminutive genomes and as part of their host interaction mechanism, the genomes of new nanohaloarchaea do encode giant surface proteins, and one of them (9,409 amino acids long) is the largest protein of any sequenced nanohaloarchaea and the largest protein ever discovered in cultivated archaea.

12.
Microb Biotechnol ; 16(9): 1803-1822, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37317055

RESUMO

Climate change, desertification, salinisation of soils and the changing hydrology of the Earth are creating or modifying microbial habitats at all scales including the oceans, saline groundwaters and brine lakes. In environments that are saline or hypersaline, the biodegradation of recalcitrant plant and animal polysaccharides can be inhibited by salt-induced microbial stress and/or by limitation of the metabolic capabilities of halophilic microbes. We recently demonstrated that the chitinolytic haloarchaeon Halomicrobium can serve as the host for an ectosymbiont, nanohaloarchaeon 'Candidatus Nanohalobium constans'. Here, we consider whether nanohaloarchaea can benefit from the haloarchaea-mediated degradation of xylan, a major hemicellulose component of wood. Using samples of natural evaporitic brines and anthropogenic solar salterns, we describe genome-inferred trophic relations in two extremely halophilic xylan-degrading three-member consortia. We succeeded in genome assembly and closure for all members of both xylan-degrading cultures and elucidated the respective food chains within these consortia. We provide evidence that ectosymbiontic nanohaloarchaea is an active ecophysiological component of extremely halophilic xylan-degrading communities (although by proxy) in hypersaline environments. In each consortium, nanohaloarchaea occur as ectosymbionts of Haloferax, which in turn act as scavenger of oligosaccharides produced by xylan-hydrolysing Halorhabdus. We further obtained and characterised the nanohaloarchaea-host associations using microscopy, multi-omics and cultivation approaches. The current study also doubled culturable nanohaloarchaeal symbionts and demonstrated that these enigmatic nano-sized archaea can be readily isolated in binary co-cultures using an appropriate enrichment strategy. We discuss the implications of xylan degradation by halophiles in biotechnology and for the United Nation's Sustainable Development Goals.


Assuntos
Haloferax , Xilanos , Ecossistema
13.
Environ Microbiol ; 14(1): 268-81, 2012 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-22040283

RESUMO

So far only little is known about the microbial ecology of Mediterranean deep-sea hypersaline anoxic lakes (DHALs). These brine lakes were formed by evaporite dissolution/brine seeps and are important model environments to provide insights into possible metabolisms and distributions of microorganisms on the early Earth. Our study on the Lake Thetis, a new thalassohaline DHAL located South-East of the Medriff Corridor, has revealed microbial communities of contrasting compositions with a high number of novel prokaryotic candidate divisions. The major finding of our present work is co-occurrence of at least three autotrophic carbon dioxide fixation pathways in the brine-seawater interface that are likely fuelled by an active ramified sulphur cycle. Genes for the reductive acetyl-CoA and reductive TCA pathways were also found in the brine suggesting that these pathways are operational even at extremely elevated salinities and that autotrophy is more important in hypersaline environments than previously assumed. Surprisingly, genes coding for RuBisCo were found in the highly reduced brine. Three types of sulphide oxidation pathways were found in the interface. The first involves a multienzyme Sox complex catalysing the complete oxidation of reduced sulphur compounds to sulphate, the second type recruits SQR sulphide:quinone reductase for oxidation of sulphide to elemental sulphur, which, in the presence of sulphide, could further be reduced by polysulphide reductases in the third pathway. The presence of the latter two allows a maximal energy yield from the oxidation of sulphide and at the same time prevents the acidification and the accumulation of S(0) deposits. Amino acid composition analysis of deduced proteins revealed a significant overrepresentation of acidic residues in the brine compared with the interface. This trait is typical for halophilic organisms as an adaptation to the brine's extreme hypersalinity. This work presents the first metagenomic survey of the microbial communities of the recently discovered Lake Thetis whose brine constitutes one of saltiest water bodies ever reported.


Assuntos
Archaea/genética , Bactérias/genética , Metagenoma , Água do Mar/química , Água do Mar/microbiologia , Processos Autotróficos , Dióxido de Carbono/metabolismo , Biologia Computacional , Mar Mediterrâneo , Metagenômica , Oxirredução , Filogenia , Ribulose-Bifosfato Carboxilase/genética , Análise de Sequência de DNA , Compostos de Enxofre/metabolismo , Microbiologia da Água
14.
Extremophiles ; 16(1): 21-34, 2012 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-22009262

RESUMO

Only recently, a novel anoxic hypersaline (thalassic) basin in the eastern Mediterranean was discovered at a depth of 3,258 m. The halite-saturated brine of this polyextreme basin revealed one of the highest salt concentrations ever reported for such an environment (salinity of 348‰). Using a eukaryote-specific probe and fluorescence in situ hybridization, we counted 0.6 × 10(4) protists per liter of anoxic brine. SSU rRNA sequence analyses, based on amplification of environmental cDNA identified fungi as the most diverse taxonomic group of eukaryotes in the brine, making deep-sea brines sources of unknown fungal diversity and hotspots for the discovery of novel metabolic pathways and for secondary metabolites. The second most diverse phylotypes are ciliates and stramenopiles (each 20%). The occurrence of closely related ciliate sequences exclusively in other Mediterranean brine basins suggests specific adaptations of the respective organisms to such habitats. Betadiversity-analyses confirm that microeukaryote communities in the brine and the interface are notably different. Several distinct morphotypes in brine samples suggest that the rRNA sequences detected in Thetis brine can be linked to indigenous polyextremophile protists. This contradicts previous assumptions that such extremely high salt concentrations are anathema to eukaryotic life. The upper salinity limits for eukaryotic life remain unidentified.


Assuntos
Biologia Marinha , Água do Mar/química , Cloreto de Sódio/análise , Microbiologia da Água , DNA Complementar , Filogenia , RNA Ribossômico 18S/genética
15.
Environ Microbiol ; 13(8): 2250-68, 2011 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-21518212

RESUMO

In September 2008, an expedition of the RV Urania was devoted to exploration of the genomic richness of deep hypersaline anoxic lakes (DHALs) located in the Western part of the Mediterranean Ridge. Approximately 40 nautical miles SE from Urania Lake, the presence of anoxic hypersaline lake, which we named Thetis, was confirmed by swath bathymetry profiling and through immediate sampling casts. The brine surface of the Thetis Lake is located at a depth of 3258 m with a thickness of ≈ 157 m. Brine composition was found to be thalassohaline, saturated by NaCl with a total salinity of 348‰, which is one of highest value reported for DHALs. Similarly to other Mediterranean DHALs, seawater-brine interface of Thetis represents a steep pycno- and chemocline with gradients of salinity, electron donors and acceptors and posseses a remarkable stratification of prokaryotic communities, observed to be more metabolically active in the upper interface where redox gradient was sharper. [(14) C]-bicarbonate fixation analysis revealed that microbial communities are sustained by sulfur-oxidizing chemolithoautotrophic primary producers that thrive within upper interface. Besides microaerophilic autotrophy, heterotrophic sulfate reduction, methanogenesis and anaerobic methane oxidation are likely the predominant processes driving the ecosystem of Thetis Lake.


Assuntos
Archaea/fisiologia , Fenômenos Fisiológicos Bacterianos , Biodiversidade , Salinidade , Água do Mar/microbiologia , Archaea/classificação , Archaea/genética , Bactérias/classificação , Bactérias/genética , Fenômenos Bioquímicos/genética , Metano/metabolismo , Dados de Sequência Molecular , Oceanos e Mares , Filogenia , RNA Ribossômico 16S/genética , Água do Mar/química
16.
Environ Microbiol ; 12(7): 2020-33, 2010 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-20406283

RESUMO

A new piezotolerant alkane-degrading bacterium (Marinobacter hydrocarbonoclasticus strain #5) was isolated from deep (3475 m) Mediterranean seawater and grown at atmospheric pressure (0.1 MPa) and at 35 MPa with hexadecane as sole source of carbon and energy. Modification of the hydrostatic pressure influenced neither the growth rate nor the amount of degraded hexadecane (approximately 90%) during 13 days of incubation. However, the lipid composition of the cells sharply differed under both pressure conditions. At 0.1 MPa, M. hydrocarbonoclasticus #5 biosynthesized large amounts ( approximately 62% of the total cellular lipids) of hexadecane-derived wax esters (WEs), which accumulated in the cells under the form of individual lipid bodies. Intracellular WEs were also synthesized at 35 MPa, but their proportion was half that at 0.1 MPa. This lower WE content at high pressure was balanced by an increase in the total cellular phospholipid content. The chemical composition of WEs formed under both pressure conditions also strongly differed. Saturated WEs were preferentially formed at 0.1 MPa whereas diunsaturated WEs dominated at 35 MPa. This increase of the unsaturation ratio of WEs resembled the one classically observed for bacterial membrane lipid homeostasis. Remarkably, the unsaturation ratio of membrane fatty acids of M. hydrocarbonoclasticus grown at 35 MPa was only slightly higher than at 0.1 MPa. Overall, the results suggest that intracellular WEs and phospholipids play complementary roles in the physiological adaptation of strain #5 to different hydrostatic pressures.


Assuntos
Citoplasma/química , Pressão Hidrostática , Metabolismo dos Lipídeos , Marinobacter/fisiologia , Lipídeos de Membrana/análise , Estresse Fisiológico , Alcanos/metabolismo , Análise por Conglomerados , DNA Bacteriano/química , DNA Bacteriano/genética , DNA Ribossômico/química , DNA Ribossômico/genética , Marinobacter/crescimento & desenvolvimento , Marinobacter/isolamento & purificação , Marinobacter/metabolismo , Mar Mediterrâneo , Membranas , Microscopia Eletrônica de Transmissão , Dados de Sequência Molecular , Organelas/ultraestrutura , Filogenia , RNA Ribossômico 16S/genética , Água do Mar/microbiologia , Análise de Sequência de DNA
17.
Syst Appl Microbiol ; 43(5): 126107, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32847782

RESUMO

A novel anaerobic methylotrophic halophilic methanogen strain SLHTYROT was isolated from a deep hypersaline anoxic basin called "Tyro" located in the Eastern Mediterranean Sea. Cells of SLHTYROT were motile cocci. The strain SLHTYROT grew between 12 and 37 °C (optimum 30 °C), at pH between 6.5 and 8.2 (optimum pH 7.5) and salinity from 45 to 240 g L-1 NaCl (optimum 135 g L-1). Strain SLHTYROT was methylotrophic methanogen able to use methylated compounds (trimethylamine, dimethylamine, monomethylamine and methanol). Strain SLHTYROT was able to grow at in situ hydrostatic pressure and temperature conditions (35 MPa, 14 °C). Phylogenetic analysis based on 16S rRNA gene and mcrA gene sequences indicated that strain SLHTYROT was affiliated to genus Methanohalophilus within the order Methanosarcinales. It shared >99.16% of the 16S rRNA gene sequence similarity with strains of other Methanohalophilus species. Based on ANIb, AAI and dDDH measurements, and the physiological properties of the novel isolate, we propose that strain SLHTYROT should be classified as a representative of a novel species, for which the name Methanohalophilus profundi sp. nov. is proposed; the type strain is SLHTYROT (=DSM 108854 = JCM 32768 = UBOCC-M-3308).


Assuntos
Methanosarcinaceae/classificação , Methanosarcinaceae/isolamento & purificação , Água do Mar/microbiologia , Microbiologia da Água , Anaerobiose , Genes Arqueais , Concentração de Íons de Hidrogênio , Pressão Hidrostática , Mar Mediterrâneo , Metanol/metabolismo , Methanosarcinaceae/citologia , Methanosarcinaceae/fisiologia , Metilaminas/metabolismo , Filogenia , RNA Bacteriano/genética , RNA Ribossômico 16S/genética , Salinidade , Temperatura
18.
Sci Rep ; 9(1): 8031, 2019 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-31123315

RESUMO

A correction to this article has been published and is linked from the HTML and PDF versions of this paper. The error has been fixed in the paper.

19.
Sci Rep ; 9(1): 1679, 2019 02 08.
Artigo em Inglês | MEDLINE | ID: mdl-30737448

RESUMO

Hydrated, magnesium-rich minerals and subglacial brines exist on the martian surface, so the habitability of high-Mg2+ environments on Earth has extraterrestrial (as well as terrestrial) implications. Here, we report the discovery of a MgCl2-dominated (4.72 M) brine lake on the floor of the Mediterranean Ridge that underlies a 3500-m water column, and name it Lake Hephaestus. Stable isotope analyses indicated that the Hephaestus brine is derived from interactions between ancient bishofite-enriched evaporites and subsurface fluids. Analyses of sediment pore waters indicated that the Hephaestus depression had contained the MgCl2 brine for a remarkably short period; only 700 years. Lake Hephaestus is, therefore, the youngest among currently known submarine athalassohaline brine lakes on Earth. Due to its biologically hostile properties (low water-activity and extreme chaotropicity), the Hephaestus brine is devoid of life. By contrast, the seawater-Hephaestus brine interface has been shown to act as refuge for extremely halophilic and magnesium-adapted stratified communities of microbes, even at MgCl2 concentrations that approach the water-activity limit for life (0.653).

20.
Front Microbiol ; 9: 2359, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30333814

RESUMO

The ubiquity of strictly anaerobic sulfur-respiring haloarchaea in hypersaline systems with circumneutral pH has shaken a traditional concept of this group as predominantly aerobic heterotrophs. Here, we demonstrated that this functional group of haloarchaea also has its representatives in hypersaline alkaline lakes. Sediments from various hypersaline soda lakes showed high activity of sulfur reduction only partially inhibited by antibiotics. Eight pure cultures of sulfur-reducing natronoarchaea were isolated from such sediments using formate and butyrate as electron donors and sulfur as an electron acceptor. Unlike strict anaerobic haloarchaea, these novel sulfur-reducing natronoarchaea are facultative anaerobes, whose metabolic capabilities were inferred from cultivation experiments and genomic/proteomic reconstruction. While sharing many physiological traits with strict anaerobic haloarchaea, following metabolic distinctions make these new organisms be successful in both anoxic and aerobic habitats: the recruiting of heme-copper quinol oxidases as terminal electron sink in aerobic respiratory chain and the utilization of formate, hydrogen or short-chain fatty acids as electron donors during anaerobic growth with elemental sulfur. Obtained results significantly advance the emerging concept of halo(natrono)archaea as important players in the anaerobic sulfur and carbon cycling in various salt-saturated habitats.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA