Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 43
Filtrar
1.
Am J Hematol ; 98(4): 588-597, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36594185

RESUMO

To enhance protective cytomegalovirus (CMV)-specific T cells in immunosuppressed recipients of an allogeneic hematopoietic cell transplant (HCT), we evaluated post-HCT impact of vaccinating healthy HCT donors with Triplex. Triplex is a viral vectored recombinant vaccine expressing three immunodominant CMV antigens. The vector is modified vaccinia Ankara (MVA), an attenuated, non-replicating poxvirus derived from the vaccinia virus strain Ankara. It demonstrated tolerability and immunogenicity in healthy adults and HCT recipients, in whom it also reduced CMV reactivation. Here, we report feasibility, safety, and immunological outcomes of a pilot phase 1 trial (NCT03560752 at ClinicalTrials.gov) including 17 CMV-seropositive recipients who received an HCT from a matched related donor (MRD) vaccinated with 5.1 × 108 pfu/ml of Triplex before cell harvest (median 15, range 11-28 days). Donor and recipient pairs who committed to participation in the trial resulted in exceptional adherence to the protocol. Triplex was well-tolerated with limited adverse events in donors and recipients, who all engrafted with full donor chimerism. On day 28 post-HCT, levels of functional vaccinia- and CMV-specific CD137+ CD8+ T cells were significantly higher (p < .0001 and p = .0174, respectively) in recipients of Triplex vaccinated MRD than unvaccinated MRD (control cohort). Predominantly, central and effector memory CMV-specific T-cell responses continued to steadily expand through 1-year follow-up. CMV viremia requiring antivirals developed in three recipients (18%). In summary, this novel approach represents a promising strategy applicable to different HCT settings for limiting the use of antiviral prophylaxis, which can impair and delay CMV-specific immunity, leading to CMV reactivation requiring treatment.


Assuntos
Infecções por Citomegalovirus , Transplante de Células-Tronco Hematopoéticas , Vacínia , Adulto , Humanos , Citomegalovirus , Transplante de Células-Tronco Hematopoéticas/efeitos adversos , Linfócitos T CD8-Positivos , Vacínia/tratamento farmacológico , Vacínia/etiologia , Infecções por Citomegalovirus/prevenção & controle , Antivirais/uso terapêutico , Vacinação
2.
Ann Intern Med ; 172(5): 306-316, 2020 03 03.
Artigo em Inglês | MEDLINE | ID: mdl-32040960

RESUMO

Background: Triplex vaccine was developed to enhance cytomegalovirus (CMV)-specific T cells and prevent CMV reactivation early after hematopoietic stem cell transplant (HCT). Objective: To determine the safety and efficacy of Triplex. Design: First-in-patient, phase 2 trial. (ClinicalTrials.gov: NCT02506933). Setting: 3 U.S. HCT centers. Participants: 102 CMV-seropositive HCT recipients at high risk for CMV reactivation. Intervention: Intramuscular injections of Triplex or placebo were given on days 28 and 56 after HCT. Triplex is a recombinant attenuated poxvirus (modified vaccinia Ankara) expressing immunodominant CMV antigens. Measurements: The primary outcomes were CMV events (CMV DNA level ≥1250 IU/mL, CMV viremia requiring antiviral treatment, or end-organ disease), nonrelapse mortality, and severe (grade 3 or 4) graft-versus-host disease (GVHD), all evaluated through 100 days after HCT, and grade 3 or 4 adverse events (AEs) within 2 weeks after vaccination that were probably or definitely attributable to injection. Results: A total of 102 patients (51 per group) received the first vaccination, and 91 (89.2%) received both vaccinations (46 Triplex and 45 placebo). Reactivation of CMV occurred in 5 Triplex (9.8%) and 10 placebo (19.6%) recipients (hazard ratio, 0.46 [95% CI, 0.16 to 1.4]; P = 0.075). No Triplex recipient died of nonrelapse causes during the first 100 days or had serious AEs, and no grade 3 or 4 AEs related to vaccination were observed within 2 weeks after vaccination. Incidence of severe acute GVHD after injection was similar between groups (hazard ratio, 1.1 [CI, 0.53 to 2.4]; P = 0.23). Levels of long-lasting, pp65-specific T cells with effector memory phenotype were significantly higher in Triplex than placebo recipients. Limitation: The lower-than-expected incidence of CMV events in the placebo group reduced the power of the trial. Conclusion: No vaccine-associated safety concerns were identified. Triplex elicited and amplified CMV-specific immune responses, and fewer Triplex-vaccinated patients had CMV viremia. Primary Funding Source: National Cancer Institute and Helocyte.


Assuntos
Infecções por Citomegalovirus/prevenção & controle , Vacinas contra Citomegalovirus/uso terapêutico , Citomegalovirus , Transplante de Células-Tronco Hematopoéticas/efeitos adversos , Viremia/prevenção & controle , Idoso , Citomegalovirus/imunologia , Método Duplo-Cego , Feminino , Humanos , Masculino , Pessoa de Meia-Idade
3.
Biol Blood Marrow Transplant ; 25(4): 771-784, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30562587

RESUMO

Early cytomegalovirus (CMV) reactivation remains a significant cause of morbidity and mortality in allogeneic hematopoietic cell transplant (HCT) recipients. CMVPepVax is an investigational peptide vaccine designed to control CMV infection in HCT recipients seropositive for CMV by stimulating the expansion of T cell subsets that target the CMV tegument protein pp65. In a randomized Phase Ib pilot trial (ClinicalTrials.gov NCT01588015), two injections of CMVPepVax (at days 28 and 56 post-HCT) demonstrated safety, immunogenicity, increased relapse-free survival, and reduced CMV reactivation and use of antivirals. In the present study, we assessed the phenotypes and time courses of the pp65-specific CD8 T cell subsets that expanded in response to CMVPepVax vaccination. The functionality and antiviral role of CMV-specific T cells have been linked to immune reconstitution profiles characterized predominantly by differentiated effector memory T (TEM) subsets that have lost membrane expression of the costimulatory molecule CD28 and often reexpress the RA isoform of CD45 (TEMRA). Major histocompatibility complex class I pp65495-503 multimers, as well as CD28 and CD45 memory markers, were used to detect immune reconstitution in blood specimens from HCT recipients enrolled in the Phase Ib clinical trial. Specimens from the 10 (out of 18) vaccinated patients who had adequate (≥.2%) multimer binding to allow for memory analysis showed highly differentiated TEM and TEMRA phenotypes for pp65495-503-specific CD8 T cells during the first 100days post-transplantation. In particular, by day 70, during the period of highest risk for CMV reactivation, combined TEM and TEMRA phenotypes constituted a median of 90% of pp65495-503-specific CD8 T cells in these vaccinated patients. CMV viremia was not detectable in the patients who received CMVPepVax, although their pp65495-503-specific CD8 T cell profiles were strikingly similar to those observed in viremic patients who did not receive the vaccine. Collectively, our findings indicate that in the absence of clinically relevant viremia, CMVPepVax reconstituted significant levels of differentiated pp65495-503-specific CD8 TEMs early post-HCT. Our data indicate that the rapid reconstitution of CMV-specific T cells with marked levels of effector phenotypes may have been key to the favorable outcomes of the CMVPepVax clinical trial.


Assuntos
Infecções por Citomegalovirus/tratamento farmacológico , Citomegalovirus/imunologia , Transplante de Células-Tronco Hematopoéticas/métodos , Subpopulações de Linfócitos T/imunologia , Condicionamento Pré-Transplante/métodos , Vacinação/métodos , Feminino , Humanos , Estudos Longitudinais , Masculino , Fenótipo
4.
J Virol ; 92(19)2018 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-30045984

RESUMO

As human cytomegalovirus (HCMV) is a common cause of disease in newborns and transplant recipients, developing an HCMV vaccine is considered a major public health priority. Yet an HCMV vaccine candidate remains elusive. Although the precise HCMV immune correlates of protection are unclear, both humoral and cellular immune responses have been implicated in protection against HCMV infection and disease. Here we describe a vaccine approach based on the well-characterized modified vaccinia virus Ankara (MVA) vector to stimulate robust HCMV humoral and cellular immune responses by an antigen combination composed of the envelope pentamer complex (PC), glycoprotein B (gB), and phosphoprotein 65 (pp65). We show that in mice, multiantigenic MVA vaccine vectors simultaneously expressing all five PC subunits, gB, and pp65 elicit potent complement-independent and complement-dependent HCMV neutralizing antibodies as well as mouse and human MHC-restricted, polyfunctional T cell responses by the individual antigens. In addition, we demonstrate that the PC/gB antigen combination of these multiantigenic MVA vectors can enhance the stimulation of humoral immune responses that mediate in vitro neutralization of different HCMV strains and antibody-dependent cellular cytotoxicity. These results support the use of MVA to develop a multiantigenic vaccine candidate for controlling HCMV infection and disease in different target populations, such as pregnant women and transplant recipients.IMPORTANCE The development of a human cytomegalovirus (HCMV) vaccine to prevent congenital disease and transplantation-related complications is an unmet medical need. While many HCMV vaccine candidates have been developed, partial success in preventing or controlling HCMV infection in women of childbearing age and transplant recipients has been observed with an approach based on envelope glycoprotein B (gB). We introduce a novel vaccine strategy based on the clinically deployable modified vaccinia virus Ankara (MVA) vaccine vector to elicit potent humoral and cellular immune responses by multiple immunodominant HCMV antigens, including gB, phosphoprotein 65, and all five subunits of the pentamer complex. These findings could contribute to development of a multiantigenic vaccine strategy that may afford more protection against HCMV infection and disease than a vaccine approach employing solely gB.


Assuntos
Infecções por Citomegalovirus/prevenção & controle , Vacinas contra Citomegalovirus/imunologia , Citomegalovirus/imunologia , Fosfoproteínas/imunologia , Vaccinia virus/imunologia , Proteínas do Envelope Viral/imunologia , Proteínas da Matriz Viral/imunologia , Animais , Anticorpos Neutralizantes/biossíntese , Anticorpos Antivirais/biossíntese , Antígenos Virais/genética , Antígenos Virais/imunologia , Sequência de Bases , Proteínas do Sistema Complemento/genética , Proteínas do Sistema Complemento/metabolismo , Citomegalovirus/genética , Infecções por Citomegalovirus/genética , Infecções por Citomegalovirus/imunologia , Infecções por Citomegalovirus/virologia , Vacinas contra Citomegalovirus/administração & dosagem , Vacinas contra Citomegalovirus/genética , Feminino , Regulação da Expressão Gênica , Humanos , Imunidade Celular/efeitos dos fármacos , Imunidade Humoral/efeitos dos fármacos , Camundongos , Fosfoproteínas/genética , Gravidez , Alinhamento de Sequência , Transdução de Sinais , Vaccinia virus/genética , Proteínas do Envelope Viral/genética , Proteínas da Matriz Viral/genética
5.
Blood ; 129(1): 114-125, 2017 01 05.
Artigo em Inglês | MEDLINE | ID: mdl-27760761

RESUMO

Attenuated poxvirus modified vaccinia Ankara (MVA) is a useful viral-based vaccine for clinical investigation, because of its excellent safety profile and property of inducing potent immune responses against recombinant (r) antigens. We developed Triplex by constructing an rMVA encoding 3 immunodominant cytomegalovirus (CMV) antigens, which stimulates a host antiviral response: UL83 (pp65), UL123 (IE1-exon4), and UL122 (IE2-exon5). We completed the first clinical evaluation of the Triplex vaccine in 24 healthy adults, with or without immunity to CMV and vaccinia virus (previous DryVax smallpox vaccination). Three escalating dose levels (DL) were administered IM in 8 subjects/DL, with an identical booster injection 28 days later and 1-year follow-up. Vaccinations at all DL were safe with no dose-limiting toxicities. No vaccine-related serious adverse events were documented. Local and systemic reactogenicity was transient and self-limiting. Robust, functional, and durable Triplex-driven expansions of CMV-specific T cells were detected by measuring T-cell surface levels of 4-1BB (CD137), binding to CMV-specific HLA multimers, and interferon-γ production. Marked and durable CMV-specific T-cell responses were also detected in Triplex-vaccinated CMV-seronegatives, and in DryVax-vaccinated subjects. Long-lived memory effector phenotype, associated with viral control during CMV primary infection, was predominantly found on the membrane of CMV-specific and functional T cells, whereas off-target vaccine responses activating memory T cells from the related herpesvirus Epstein-Barr virus remained undetectable. Combined safety and immunogenicity results of MVA in allogeneic hematopoietic stem cell transplant (HCT) recipients and Triplex in healthy adults motivated the initiation of a placebo-controlled multicenter trial of Triplex in HCT patients. This trial was registered at www.clinicaltrials.gov as #NCT02506933.


Assuntos
Antígenos Virais/imunologia , Vacinas contra Citomegalovirus/imunologia , Ativação Linfocitária/imunologia , Linfócitos T/imunologia , Adulto , Citomegalovirus , Vacinas contra Citomegalovirus/efeitos adversos , Feminino , Humanos , Proteínas Imediatamente Precoces/imunologia , Masculino , Pessoa de Meia-Idade , Fosfoproteínas/imunologia , Transativadores/imunologia , Vacinas de DNA , Proteínas da Matriz Viral/imunologia , Vacinas Virais , Adulto Jovem
9.
PLoS Pathog ; 10(11): e1004524, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25412505

RESUMO

Human Cytomegalovirus (HCMV) utilizes two different pathways for host cell entry. HCMV entry into fibroblasts requires glycoproteins gB and gH/gL, whereas HCMV entry into epithelial and endothelial cells (EC) requires an additional complex composed of gH, gL, UL128, UL130, and UL131A, referred to as the gH/gL-pentamer complex (gH/gL-PC). While there are no established correlates of protection against HCMV, antibodies are thought to be important in controlling infection. Neutralizing antibodies (NAb) that prevent gH/gL-PC mediated entry into EC are candidates to be assessed for in vivo protective function. However, these potent NAb are predominantly directed against conformational epitopes derived from the assembled gH/gL-PC. To address these concerns, we constructed Modified Vaccinia Ankara (MVA) viruses co-expressing all five gH/gL-PC subunits (MVA-gH/gL-PC), subsets of gH/gL-PC subunits (gH/gL or UL128/UL130/UL131A), or the gB subunit from HCMV strain TB40/E. We provide evidence for cell surface expression and assembly of complexes expressing full-length gH or gB, or their secretion when the corresponding transmembrane domains are deleted. Mice or rhesus macaques (RM) were vaccinated three times with MVA recombinants and serum NAb titers that prevented 50% infection of human EC or fibroblasts by HCMV TB40/E were determined. NAb responses induced by MVA-gH/gL-PC blocked HCMV infection of EC with potencies that were two orders of magnitude greater than those induced by MVA expressing gH/gL, UL128-UL131A, or gB. In addition, MVA-gH/gL-PC induced NAb responses that were durable and efficacious to prevent HCMV infection of Hofbauer macrophages, a fetal-derived cell localized within the placenta. NAb were also detectable in saliva of vaccinated RM and reached serum peak levels comparable to NAb titers found in HCMV hyperimmune globulins. This vaccine based on a translational poxvirus platform co-delivers all five HCMV gH/gL-PC subunits to achieve robust humoral responses that neutralize HCMV infection of EC, placental macrophages and fibroblasts, properties of potential value in a prophylactic vaccine.


Assuntos
Anticorpos Neutralizantes/imunologia , Anticorpos Antivirais/imunologia , Infecções por Citomegalovirus , Vacinas contra Citomegalovirus , Citomegalovirus , Complexos Multiproteicos , Proteínas do Envelope Viral , Animais , Citomegalovirus/genética , Citomegalovirus/imunologia , Infecções por Citomegalovirus/genética , Infecções por Citomegalovirus/imunologia , Infecções por Citomegalovirus/prevenção & controle , Vacinas contra Citomegalovirus/genética , Vacinas contra Citomegalovirus/imunologia , Feminino , Humanos , Macaca mulatta , Camundongos , Camundongos Endogâmicos BALB C , Complexos Multiproteicos/genética , Complexos Multiproteicos/imunologia , Vaccinia virus/genética , Vaccinia virus/imunologia , Proteínas do Envelope Viral/genética , Proteínas do Envelope Viral/imunologia
11.
Blood ; 118(8): 2159-69, 2011 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-21719601

RESUMO

The serine proteases, neutrophil elastase (HNE) and proteinase 3 (PR3), are aberrantly expressed in human myeloid leukemias. T-cell responses to these proteins have been correlated with remission in patients with chronic myeloid leukemia (CML). Human PR3/HNE-specific CD8(+) T cells predominantly recognize a nonameric HLA-A2-restricted T-cell epitope called PR1 which is conserved in both Ags. However, CML patients have CD8(+) T cells in peripheral blood recognizing an additional HLA-A2 epitope termed PR2. To assess immunologic properties of these Ags, novel recombinant vaccinia viruses (rVV) expressing PR3 and HNE were evaluated in HLA-A2 transgenic (Tg) mice (HHDII). Immunization of HHDII mice with rVV-PR3 elicited a robust PR3-specific CD8(+) T-cell response dominated by recognition of PR2, with minimal recognition of the PR1 epitope. This result was unexpected, because the PR2 peptide has been reported to bind poorly to HLA. To account for these findings, we proposed that HHDII mice negatively selected PR1-specific T cells because of the presence of this epitope within murine PR3 and HNE, leading to immunodominance of PR2-specific responses. PR2-specific splenocytes are cytotoxic to targets expressing naturally processed PR3, though PR1-specific splenocytes are not. We conclude that PR2 represents a functional T-cell epitope recognized in mice and human leukemia patients. These studies are registered at www.clinicaltrials.gov as NCT00716911.


Assuntos
Epitopos de Linfócito T/imunologia , Antígeno HLA-A2/imunologia , Leucemia Mielogênica Crônica BCR-ABL Positiva/imunologia , Sequência de Aminoácidos , Animais , Apresentação de Antígeno , Linfócitos T CD8-Positivos/imunologia , Grânulos Citoplasmáticos/enzimologia , Grânulos Citoplasmáticos/imunologia , Epitopos de Linfócito T/genética , Antígeno HLA-A2/genética , Antígeno HLA-A2/metabolismo , Transplante de Células-Tronco Hematopoéticas , Humanos , Epitopos Imunodominantes/genética , Epitopos Imunodominantes/imunologia , Leucemia Mielogênica Crônica BCR-ABL Positiva/terapia , Elastase de Leucócito/genética , Elastase de Leucócito/imunologia , Camundongos , Camundongos Transgênicos , Dados de Sequência Molecular , Mieloblastina/genética , Mieloblastina/imunologia , Proteínas Recombinantes/genética , Proteínas Recombinantes/imunologia , Homologia de Sequência de Aminoácidos , Linfócitos T Citotóxicos/imunologia , Vaccinia virus/genética , Vaccinia virus/imunologia
12.
J Infect Dis ; 205(8): 1294-304, 2012 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-22402037

RESUMO

BACKGROUND: It has been reported that cytomegalovirus (CMV) pp65-specific T cells can protect hematopoietic cell transplant (HCT) recipients from CMV complications. Two candidate CMV peptide vaccines composed of the HLA A*0201 pp65(495-503) cytotoxic CD8(+) T-cell epitope fused to 2 different universal T-helper epitopes (either the synthetic Pan DR epitope [PADRE] or a natural Tetanus sequence) were clinically evaluated for safety and ability to elicit pp65 T cells in HLA A*0201 healthy volunteers. METHODS: Escalating doses (0.5, 2.5, 10 mg) of PADRE or Tetanus pp65(495-503) vaccines with (30 adults) or without (28 adults) PF03512676 adjuvant were administered by subcutaneous injection every 3 weeks for a total of 4 injections. RESULTS: No serious adverse events were reported, although vaccines used in combination with PF03512676 had enhanced reactogenicity. Ex vivo responses were detected by flow cytometry exclusively in volunteers who received the vaccine coadministered with PF03512676. In addition, using a sensitive in vitro stimulation system, vaccine-elicited pp65(495-503) T cells were expanded in 30% of volunteers injected solely with the CMV peptides and in all tested subjects receiving the vaccines coinjected with PF03512676. CONCLUSIONS: Acceptable safety profiles and vaccine-driven expansion of pp65(495-503) T cells in healthy adults support further evaluation of CMV peptide vaccines combined with PF03512676 in the HCT setting. CLINICAL TRIALS REGISTRATION: NCT00722839.


Assuntos
Adjuvantes Imunológicos/administração & dosagem , Infecções por Citomegalovirus/prevenção & controle , Vacinas contra Citomegalovirus/imunologia , Vacinas Antimaláricas/imunologia , Oligodesoxirribonucleotídeos/administração & dosagem , Toxoide Tetânico/imunologia , Adjuvantes Imunológicos/efeitos adversos , Adolescente , Adulto , Sequência de Aminoácidos , Linfócitos T CD8-Positivos/fisiologia , Vacinas contra Citomegalovirus/administração & dosagem , Vacinas contra Citomegalovirus/efeitos adversos , Relação Dose-Resposta Imunológica , Epitopos , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Oligodesoxirribonucleotídeos/efeitos adversos , Proteínas Recombinantes/imunologia , Toxoide Tetânico/administração & dosagem , Toxoide Tetânico/efeitos adversos , Vacinas Sintéticas , Adulto Jovem
13.
Front Immunol ; 14: 1114131, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36936918

RESUMO

In the current post-pandemic era, recipients of an allogeneic hematopoietic stem cell transplant (HCT) deserve special attention. In these vulnerable patients, vaccine effectiveness is reduced by post-transplant immune-suppressive therapy; consequently, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) disease (COVID-19) is often associated with elevated morbidity and mortality. Characterizing SARS-CoV-2 adaptive immunity transfer from immune donors to HCT recipients in the context of immunosuppression will help identify optimal timing and vaccination strategies that can provide adequate protection to HCT recipients against infection with evolving SARS-CoV-2 variants. We performed a prospective observational study (NCT04666025 at ClinicalTrials.gov) to longitudinally monitor the transfer of SARS-CoV-2-specific antiviral immunity from HCT donors, who were either vaccinated or had a history of COVID-19, to their recipients via T-cell replete graft. Levels, function, and quality of SARS-CoV-2-specific immune responses were longitudinally analyzed up to 6 months post-HCT in 14 matched unrelated donor/recipients and four haploidentical donor/recipient pairs. A markedly skewed donor-derived SARS-CoV-2 CD4 T-cell response was measurable in 15 (83%) recipients. It showed a polarized Th1 functional profile, with the prevalence of central memory phenotype subsets. SARS-CoV-2-specific IFN-γ was detectable throughout the observation period, including early post-transplant (day +30). Functionally experienced SARS-CoV-2 Th1-type T cells promptly expanded in two recipients at the time of post-HCT vaccination and in two others who were infected and survived post-transplant COVID-19 infection. Our data suggest that donor-derived SARS-CoV-2 T-cell responses are functional in immunosuppressed recipients and may play a critical role in post-HCT vaccine response and protection from the fatal disease. Clinical trial registration: clinicaltrials.gov, identifier NCT04666025.


Assuntos
COVID-19 , Transplante de Células-Tronco Hematopoéticas , Linfócitos T , Humanos , SARS-CoV-2 , Doadores de Tecidos , Transplantados , Linfócitos T/imunologia , Vacinas contra COVID-19
14.
Vaccines (Basel) ; 11(9)2023 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-37766168

RESUMO

Hematopoietic cell transplantation (HCT) and chimeric antigen receptor (CAR)-T cell patients are immunocompromised, remain at high risk following SARS-CoV-2 infection, and are less likely than immunocompetent individuals to respond to vaccination. As part of the safety lead-in portion of a phase 2 clinical trial in patients post HCT/CAR-T for hematological malignancies (HM), we tested the immunogenicity of the synthetic modified vaccinia Ankara-based COVID-19 vaccine COH04S1 co-expressing spike (S) and nucleocapsid (N) antigens. Thirteen patients were vaccinated 3-12 months post HCT/CAR-T with two to four doses of COH04S1. SARS-CoV-2 antigen-specific humoral and cellular immune responses, including neutralizing antibodies to ancestral virus and variants of concern (VOC), were measured up to six months post vaccination and compared to immune responses in historical cohorts of naïve healthy volunteers (HV) vaccinated with COH04S1 and naïve healthcare workers (HCW) vaccinated with the FDA-approved mRNA vaccine Comirnaty® (Pfizer, New York, NY, USA). After one or two COH04S1 vaccine doses, HCT/CAR-T recipients showed a significant increase in S- and N-specific binding antibody titers and neutralizing antibodies with potent activity against SARS-CoV-2 ancestral virus and VOC, including the highly immune evasive Omicron XBB.1.5 variant. Furthermore, vaccination with COH04S1 resulted in a significant increase in S- and N-specific T cells, predominantly CD4+ T lymphocytes. Elevated S- and N-specific immune responses continued to persist at six months post vaccination. Furthermore, both humoral and cellular immune responses in COH04S1-vaccinated HCT/CAR-T patients were superior or comparable to those measured in COH04S1-vaccinated HV or Comirnaty®-vaccinated HCW. These results demonstrate robust stimulation of SARS-CoV-2 S- and N-specific immune responses including cross-reactive neutralizing antibodies by COH04S1 in HM patients post HCT/CAR-T, supporting further testing of COH04S1 in immunocompromised populations.

15.
Transplant Cell Ther ; 28(6): 343.e1-343.e4, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35272066

RESUMO

Cytomegalovirus (CMV) reactivation after hematopoietic cell transplantation (HCT) augments adaptive (CD56dimNKG2C+CD57+) natural killer (NK) and CMV-specific T cells, with potential antitumor effects. Our recent work found an association between higher abundance of adaptive NK cells after auto-HCT and lower risk of relapse in patients with multiple myeloma. Triplex vaccine is a recombinant modified vaccinia Ankara expressing immunodominant CMV antigens, which significantly enhanced CMV-specific T-cell immune responses in allo-HCT recipients. We evaluated whether 2 doses of the vaccine after auto-HCT in patients with lymphoma or myeloma improves reconstitution of adaptive NK and CMV-specific T cells. The primary endpoint was the number of adaptive NK cells at day 100 (∼1 month after dose 2) relative to day 28 (before dose 1). We conducted a single-arm phase 2 clinical trial of 20 patients with lymphoma or myeloma undergoing auto-HCT. Two doses of the vaccine were given on days 28 and 56. Adaptive NK cells increased in CMV-seronegative patients (P = .02), a rise that was more substantial than in unvaccinated historical CMV-seronegative cohorts (P = .03 comparing the rise between the 2 cohorts). There was also an increase in both CD4+ and CD8+ CMV-specific T cells in CMV-seronegative patients (P = .01) and CMV-specific CD8+ effector T cells in CMV-seropositive patients (P = .03). Triplex vaccine improved reconstitution of adaptive NK and CMV-specific T cells after auto-HCT in patients with lymphoma and myeloma. Further study is needed to determine the clinical impact of this modulation of immune response.


Assuntos
Infecções por Citomegalovirus , Vacinas contra Citomegalovirus , Transplante de Células-Tronco Hematopoéticas , Reconstituição Imune , Mieloma Múltiplo , Citomegalovirus , Infecções por Citomegalovirus/prevenção & controle , Transplante de Células-Tronco Hematopoéticas/efeitos adversos , Humanos , Células Matadoras Naturais/imunologia , Mieloma Múltiplo/complicações , Recidiva Local de Neoplasia/complicações , Linfócitos T/imunologia
16.
Blood Adv ; 6(6): 1645-1650, 2022 03 22.
Artigo em Inglês | MEDLINE | ID: mdl-35008104

RESUMO

Coronavirus disease 2019 (COVID-19), caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection has emerged as a global pandemic that upended existing protocols and practices, including those for allogeneic hematopoietic stem cell transplantation (HCT). Here, we describe the successful clinical course and multiple key interventions administered to an acute lymphoblastic leukemia patient, who tested SARS-CoV-2 positive by reverse transcriptase polymerase chain reaction on day -1 of matched unrelated donor (SARS-CoV-2 immunoglobulin G negative) T-cell-replete HCT. This experience allowed for implementing a virologic and immunomonitoring panel to characterize the impact of SARS-CoV-2 on the recipient's nascent humoral and cellular immune response. The finding of robust, functional, and persistent levels of SARS-CoV-2-specific T cells, starting early after transplant was unexpected, and in combination with the clinical strategy, may have contributed to the favorable outcome. Additionally, it is plausible that preexisting cross-reactive endemic coronavirus immunity in the allogeneic graft reduced recipient susceptibility to COVID-19 disease. This case supports the critical role that T-cell responses may play in mitigating SARS-CoV-2 infection, even in the context of transplant immunosuppression, in which reconstitution of humoral response is commonly delayed. Interventional approaches to transfer SARS-CoV-2-specific cellular immunity such as HCT donor vaccination and adaptive cellular therapy could be of benefit.


Assuntos
COVID-19 , Transplante de Células-Tronco Hematopoéticas , Humanos , Imunidade Celular , Pandemias , SARS-CoV-2
17.
iScience ; 25(8): 104745, 2022 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-35846380

RESUMO

Cell-mediated immunity may contribute to providing protection against SARS-CoV-2 and its variants of concern (VOC). We developed COH04S1, a synthetic multiantigen modified vaccinia Ankara (MVA)-based COVID-19 vaccine that stimulated potent spike (S) and nucleocapsid (N) antigen-specific humoral and cellular immunity in a phase 1 clinical trial in healthy adults. Here, we show that individuals vaccinated with COH04S1 or mRNA vaccine BNT162b2 maintain robust cross-reactive cellular immunity for six or more months post-vaccination. Although neutralizing antibodies induced in COH04S1- and BNT162b2-vaccinees showed reduced activity against Delta and Omicron variants compared to ancestral SARS-CoV-2, S-specific T cells elicited in both COH04S1- and BNT162b2-vaccinees and N-specific T cells elicited in COH04S1-vaccinees demonstrated potent and equivalent cross-reactivity against ancestral SARS-CoV-2 and the major VOC. These results suggest that vaccine-induced T cells to S and N antigens may constitute a critical second line of defense to provide long-term protection against SARS-CoV-2 VOC.

18.
Lancet Microbe ; 3(4): e252-e264, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35287430

RESUMO

Background: COH04S1, a synthetic attenuated modified vaccinia virus Ankara vector co-expressing SARS-CoV-2 spike and nucleocapsid antigens, was tested for safety and immunogenicity in healthy adults. Methods: This combined open-label and randomised, phase 1 trial was done at the City of Hope Comprehensive Cancer Center (Duarte, CA, USA). We included participants aged 18-54 years with a negative SARS-CoV-2 antibody and PCR test, normal haematology and chemistry panels, a normal electrocardiogram and troponin concentration, negative pregnancy test if female, body-mass index of 30 kg/m2 or less, and no modified vaccinia virus Ankara or poxvirus vaccine in the past 12 months. In the open-label cohort, 1·0 × 107 plaque-forming units (PFU; low dose), 1·0 × 108 PFU (medium dose), and 2·5 × 108 PFU (high dose) of COH04S1 were administered by intramuscular injection on day 0 and 28 to sentinel participants using a queue-based statistical design to limit risk. In a randomised dose expansion cohort, additional participants were randomly assigned (3:3:1), using block size of seven, to receive two placebo vaccines (placebo group), one low-dose COH04S1 and one placebo vaccine (low-dose COH04S1 plus placebo group), or two low-dose COH04S1 vaccines (low-dose COH04S1 group). The primary outcome was safety and tolerability, with secondary objectives assessing vaccine-specific immunogenicity. The primary immunological outcome was a four times increase (seroconversion) from baseline in spike-specific or nucleocapsid-specific IgG titres within 28 days of the last injection, and seroconversion rates were compared with participants who received placebo using Fisher's exact test. Additional secondary outcomes included assessment of viral neutralisation and cellular responses. This trial is registered with ClinicalTrials.gov, NCT046339466. Findings: Between Dec 13, 2020, and May 24, 2021, 56 participants initiated vaccination. On day 0 and 28, 17 participants received low-dose COH04S1, eight received medium-dose COH04S1, nine received high-dose COH04S1, five received placebo, 13 received low-dose COH04S1 followed by placebo, and four discontinued early. Grade 3 fever was observed in one participant who received low-dose COH04S1 and placebo, and grade 2 anxiety or fatigue was seen in one participant who received medium-dose COH04S1. No severe adverse events were reported. Seroconversion was observed in all 34 participants for spike protein and 32 (94%) for nucleocapsid protein (p<0·0001 vs placebo for each comparison). Four times or more increase in SARS-CoV-2 neutralising antibodies within 56 days was measured in nine of 17 participants in the low-dose COH04S1 group, all eight participants in the medium-dose COH04S1 group, and eight of nine participants in the high-dose COH04S1 group (p=0·0035 combined dose levels vs placebo). Post-prime and post-boost four times increase in spike-specific or nucleocapsid-specific T cells secreting interferon-γ was measured in 48 (98%; 95% CI 89-100) of 49 participants who received at least one dose of COH04S1 and provided a sample for immunological analysis. Interpretation: COH04S1 was well tolerated and induced spike-specific and nucleocapsid-specific antibody and T-cell responses. Future evaluation of this COVID-19 vaccine candidate as a primary or boost vaccination is warranted. Funding: The Carol Moss Foundation and City of Hope Integrated Drug Development Venture programme.


Assuntos
Vacinas contra COVID-19 , COVID-19 , Adolescente , Adulto , Anticorpos Antivirais , COVID-19/prevenção & controle , Vacinas contra COVID-19/efeitos adversos , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , SARS-CoV-2/genética , Vaccinia virus/genética , Adulto Jovem
19.
Transpl Int ; 24(9): 920-31, 2011 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-21672050

RESUMO

Antiviral prophylaxis has proved successful for prevention of cytomegalovirus (CMV) disease in solid organ transplant (SOT) patients; though emerging data suggest that antiviral agents interfere with immunity, and may inhibit immune priming. In this context, we investigated levels and phenotype of primary CMV-specific immune responses that developed during antiviral prophylaxis in a cohort of CMV seronegative recipients (R(-) ) of a SOT from a seropositive donor (D(+) ). We longitudinally monitored CMV viral load, antibodies and levels of the negative immuno-modulator IL-10. PBMC were stimulated with CMV-specific peptide libraries to measure CD137 activation marker on CMV-specific T-cells and levels of PD-1 receptor, which is over expressed on exhausted T-cells. Unexpectedly, the majority (13/18) of D(+) R(-) patients who developed a primary CMV response showed early post-transplant CMV-specific responses, though levels of PD-1 on CMV-specific T-cells remained elevated throughout prophylaxis. A strong inverse association was found between levels of plasma IL-10 and CMV-specific cellular immune responses. Our study suggests that during prophylaxis, subclinical CMV infection might have occurred in the D(+) R(-) patients, and primary CMV-specific responses were detected early post-transplant when levels of plasma IL-10 were low. Extended prophylaxis or antiviral treatment did not appear to suppress CMV-specific antibodies or T-cells, which, however, showed exhaustion phenotypes.


Assuntos
Antivirais/uso terapêutico , Infecções por Citomegalovirus/tratamento farmacológico , Citomegalovirus/efeitos dos fármacos , Citomegalovirus/imunologia , Ganciclovir/análogos & derivados , Transplante de Rim/métodos , Transplante de Fígado/métodos , Adulto , Idoso , Antígenos Virais/imunologia , Infecções por Citomegalovirus/imunologia , Infecções por Citomegalovirus/prevenção & controle , Feminino , Ganciclovir/uso terapêutico , Humanos , Proteínas Imediatamente Precoces/imunologia , Interleucina-10/biossíntese , Interleucina-10/imunologia , Masculino , Pessoa de Meia-Idade , Fosfoproteínas/imunologia , Linfócitos T/imunologia , Linfócitos T/virologia , Valganciclovir , Carga Viral , Proteínas da Matriz Viral/imunologia
20.
Immunol Lett ; 120(1-2): 108-16, 2008 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-18706443

RESUMO

Transgenic (Tg) mice expressing HLA class I alleles and lacking murine MHC class I represent a useful model for the pre-clinical evaluation of human vaccines, which focus on induction of CD8(+) T-cell responses. We have developed a platform to be used in Tg mice for exploring the immunogenicity of T-cell targets, whose immunologic epitopes have yet to be defined. To test the attributes of the evaluation system in the context of an important human pathogen, we have explored multiple antigens from cytomegalovirus (CMV). A panel of recombinant modified vaccinia Ankara (MVA) vectors, expressing various CMV proteins (CMV-MVA) was used to immunize HLA-A*0201, B*0702 and A*1101 Tg mice. Immune splenocytes were in vitro stimulated (IVS) either using syngeneic lipo-polysaccharide activated lymphoblasts or Tg HLA-I matched human EBV-transformed B-lymphoblastoid cells (LCL), both loaded with peptide libraries, encompassing the CMV protein under investigation. IVS performed with peptide library loaded lymphoblasts failed to provide a reliable stimulation. In contrast, the usage of LCL as antigen presenting cells (APC) of CMV peptide libraries resulted in a consistent and specific amplification of the Tg T-cell response in animals immunized with CMV-MVAs. The LCL IVS method reliably allowed defining the immunogenicity and immunodominant CD8(+) T-cell regions of uncharacterized CMV antigens. The combination of CMV-MVA vectors, unbiased pools of CMV-specific peptide libraries presented by Tg HLA-I matched LCL constitutes a valid tool for the pre-clinical evaluation of model candidate vaccines. This convenient method could find application to investigate the immunogenicity profile of cancer antigens or proteins from infectious human pathogens.


Assuntos
Antígenos Virais/imunologia , Avaliação Pré-Clínica de Medicamentos/métodos , Antígenos HLA/genética , Antígenos HLA/imunologia , Animais , Células Apresentadoras de Antígenos/imunologia , Linfócitos T CD8-Positivos/imunologia , Citomegalovirus/imunologia , Epitopos de Linfócito T/imunologia , Humanos , Proteínas Imediatamente Precoces/imunologia , Camundongos , Camundongos Knockout , Fosfoproteínas/imunologia , Transativadores/imunologia , Proteínas Virais/imunologia , Vacinas Virais/imunologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA