Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Molecules ; 29(15)2024 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-39125115

RESUMO

Most of the artworks stored in museums are often kept in inappropriate climatic and environmental conditions that facilitate the formation and growth of microorganisms, such as fungi, which are responsible for many types of biodegradation phenomena. To mitigate and prevent these deteriorative processes, functionalized packaging materials can be used for the storage and handling of artworks. The aim of this study was to develop a potential anti-biodeterioration coating suitable for packaging purposes. TiO2 and ZnO doped with different amounts of Ag (0.5 wt%, 1 wt%, and 3 wt%) were synthesized and dispersed in polyvinyl alcohol (PVA) and acrylic resin (Paraloid B72), then applied on different types of packaging materials (cellulose and the high-density spunbound polyethylene fiber Tyvek®, materials that are frequently used as packaging in museums). Analytical investigations (SEM/EDS, Raman, FTIR, and XRD) were employed to assess dispersion on the packaging material. Furthermore, resistance against biodeteriogens was assessed using Cladosporium sp., a bioluminometer, to define the biocidal efficacy.

2.
Molecules ; 28(5)2023 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-36903443

RESUMO

Over the centuries, humans have developed different systems to protect surfaces from the influence of environmental factors. Protective paints are the most used ones. They have undergone considerable development over the years, especially at the turn of the 19th and 20th centuries. Indeed, between the two centuries, new binders and pigments have been introduced in the constituent materials of paints. The years in which these compounds have been introduced and spread in the paint market allow them to be defined as markers for the dating of paints and painted artifacts. The present work is focused on the study of the paints of two vehicles of the Frankfurt Museum of Communication, i.e., a carriage and a cart, that was designed for the German Postal and Telecommunications Service roughly between 1880 and 1920. The characterization of the paints was performed through in situ non-invasive techniques, i.e., portable optical microscopy and multispectral imaging, and laboratory non-destructive techniques, i.e., FT-IR ATR spectroscopy and SEM-EDS. The analytical investigation and the comparison with the data reported in the literature allowed us to determine the historicity of the paints, which are all dated before the 1950s.

3.
Membranes (Basel) ; 14(4)2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38668115

RESUMO

Modern society and industrial development rely heavily on the availability of freshwater and minerals. Seawater reverse osmosis (SWRO) has been widely adopted for freshwater supply, although many questions have arisen about its environmental sustainability owing to the disposal of hypersaline rejected solutions (brine). This scenario has accelerated significant developments towards the hybridization of SWRO with membrane distillation-crystallization (MD-MCr), which can extract water and minerals from spent brine. Nevertheless, the substantial specific energy consumption associated with MD-MCr remains a significant limitation. In this work, energy harvesting was secured from renewables by hotspots embodied in the membranes, implementing the revolutionary approach of brine mining via photothermal membrane crystallization (PhMCr). This method employs self-heating nanostructured interfaces under solar radiation to enhance water evaporation, creating a carefully controlled supersaturated environment responsible for the extraction of minerals. Photothermal mixed matrix photothermal membranes (MMMs) were developed by incorporating graphene oxide (GO) or carbon black (CB) into polyvinylidene fluoride (PVDF) solubilized in an eco-friendly solvent (i.e., triethyl phosphate (TEP)). MMMs were prepared using non-solvent-induced phase separation (NIPS). The effect of GO or GB on the morphology of MMMs and the photothermal behavior was examined. Light-to-heat conversion was used in PhMCr experiments to facilitate the evaporation of water from the SWRO brine to supersaturation, leading to sodium chloride (NaCl) nucleation and crystallization. Overall, the results indicate exciting perspectives of PhMCr in brine valorization for a sustainable desalination industry.

4.
Polymers (Basel) ; 16(13)2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-39000743

RESUMO

The main conservation problem of p-PVC artworks is phthalate-based plasticizer migration. Phthalate migration from the bulk to the surface of the materials leads to the formation of a glossy and oily film on the outer layers, ultimately reducing the flexibility of the material. This study aimed to develop a removable coating for the preservation of contemporary artworks and design objects made of plasticized polyvinyl chloride (p-PVC). Several coatings incorporating chitosan, collagen, and cellulose ethers were assessed as potential barriers to inhibiting plasticizer migration. Analytical techniques including optical microscopy (OM), ultraviolet/visible/near-infrared spectroscopy (UV/Vis/NIR), Fourier transform infrared spectroscopy with attenuated total reflection (FTIR-ATR), and scanning electron microscopy (SEM) were utilized to evaluate the optical and chemical stability of selected coating formulations applied to laboratory p-PVC sheet specimens. Subsequently, formulations were tested on a real tangible example of a design object, ©Barbie doll, characterized by the prevalent issue of plasticizer migration. Furthermore, the results obtained with the tested formulations were evaluated by a group of conservators using a tailored survey. Finally, a suitable coating formulation capable of safeguarding plastic substrates was suggested.

5.
Nat Prod Res ; 37(7): 1177-1184, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-34753376

RESUMO

Copper alloys objects can deteriorate their conservation state through irreversible corrosion. Since in the cultural heritage field every artefact is unique and any loss irreplaceable, solutions for conservation are needed. Hence, there is the necessity to stop the corrosion process with a suitable cleaning and conservation process to avoid further degradation processes without changing its morphological aspect. Chelating solutions are commonly used in chemical cleaning, mainly sodium salts of ethylenediaminetetraacetic acid (EDTA). However, it is resistant to water purification procedures and is not biodegradable. The goal of this study was to see if applying an ecologically friendly chelating agent as an alternative to EDTA cleaning procedures for cultural heritage was suitable. In this study were chosen six natural-based chelators that could be a new green non-toxic alternative to EDTA in corrosion-inhibiting properties. They were tested for cleaning copper artefacts exposed to atmospheric environment in polluted areas. The study considered four amino acids, a glucoheptonate (CSA) and an industrial green chelator (GLDA). The effectiveness was tested on corrosion copper compounds and on laboratory corroded copper sheets. Finally, the cleaning efficacy was tested on four Roman coins and a modern copper painting. To define the cleaning efficacy, surface analytical investigations have been carried out by means ICP-OES, UV-VIS, µ-Raman, spectro-colorimetry, XRD and FTIR. Among the amino acids, alanine was the most effective, showing an unaltered noble patina and a good effective copper recovery from corrosion patinas.


Assuntos
Ligas , Cobre , Cobre/química , Ligas/química , Artefatos , Ácido Edético , Corrosão
6.
Materials (Basel) ; 16(4)2023 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-36837010

RESUMO

In the present study, a diagnostic approach was used to analyze the wall painting in the apse of the Sotterra church at Paola, in the province of Cosenza, Italy. The Sotterra church is nowadays located 6 m under the ground level. The presbytery area houses valuable pictorial evidence attributable to different phases. The oldest painting, visible in the apse area, dates back to the 11th-12th centuries, and it represents the subject of the present study, while the later decorations are placed in a chronological range from the 14th to the 15th centuries. Due to the peculiar environmental conditions, the conservation of subterranean sites represents a debated issue and must be properly investigated. For this reason, in this research, noninvasive analysis and laboratory-based methods were planned to obtain information about both the composition of original materials and the mechanisms and causes of alterations affecting the wall painting in the apse. Simultaneously, an environmental monitoring campaign of the indoor climate for the duration of nine months was conducted. The results highlighted the use of natural mineral pigments such as ochres and earths. The analysis of the painting stratigraphy revealed that the mural painting consists of two plaster layers characterized by lime-based binder. Moreover, the presence of a high amount of calcium sulfate has been discovered; this latter result, combined with the monitoring of the microclimate, allowed for the establishment of the crystallization and the condensation risks which occur on the investigated surfaces.

7.
Materials (Basel) ; 15(9)2022 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-35591745

RESUMO

A multi-analytical approach was employed to study wall paintings located in the Sotterra church at Paola, in the province of Cosenza, Italy. The site is an underground church (hence the name of Sotterra, which means "under the earth") rediscovered in the second half of the 19th century, during the building works of the Madonna del Carmine church on the same area. This underground church preserves valuable mural paintings having different styles. The construction's dating and overlapped modifications made until the site was abandoned is also debated. A wall painting, depicting "The Virgin" as part of the "Annunciation and the Archangel Gabriel" present on the opposite side of the apse, was selected and investigated using both in situ and laboratory-based analysis. Preliminarily, the non-destructive investigations involved several analytical techniques (IR imaging, UV-Induced Visible Fluorescence, and X-ray Fluorescence analyses) that provided mapping and characterization of pictorial layers and first data about deterioration phenomena. On the basis of this information, a more in-depth study was conducted on micro-fragments aimed at characterizing the stratigraphy and to identify the artist's technique. Cross-sections were analysed using polarized optical microscopy and electron scanning microscopy coupled with energy-dispersive X-ray spectroscopy to obtain morphological and chemical information on the selected pictorial micro-fragments of the wall painting. The results allowed to characterize the pigments and provide better readability of the whole figure, revealing details that are not visible to the naked eye, important for future historical-artistic and conservative studies. The results represent the first step of a systematic archaeometric research aimed at supporting the ongoing historical-stylistic studies to distinguish the different building phases hypothesized for this religious site which remained buried for three centuries.

8.
Methods Protoc ; 5(3)2022 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-35645345

RESUMO

Bio-colonization is a dynamic and multiphasic process headed by microorganisms. Conventional treatments to process affected stone materials include chemical biocides, whose formulations are mainly composed of quaternary ammonium salts(QAs), reported to be toxic for human health, dangerous for the environment, and not biodegradable. Accordingly, novel green and eco-friendly products are a promising alternative to treat stone materials deteriorated by microorganism colonization. In this study, the efficacy of pure essential oils (EOs) and a mix of EOs was assessed in situ and compared to a conventional biocide based on QAs, and two commercially green products based on EOs, which were taken as references, through application on a mosaic located at the Archaeological Park of Ostia Antica (Rome). The EO biocide efficacy was analyzed by ultraviolet induced luminescence, spectro-colorimetry and bio-luminometry analyses while the possibility of their permanence on simulated substrate was studied by FTIR spectroscopy. It was observed by FTIR analysis, that EOs considered volatile can leave a residue after the application; typical fingerprint bands at about 2926, 1510, and 1455 cm-1 were recorded in the EO spectra. Every tested oil was confirmed to have a biocide action although minimal in relation to the most conventional products based on QAs. The synergy of the essential oils revealed positive results, showing a stronger biocide efficacy. Further investigation should be carried out to develop the method of application and study of essential oils on cultural heritage.

9.
Nanomaterials (Basel) ; 12(9)2022 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-35564207

RESUMO

This research has focused on the assessment of the compositional features and mechanical and antifouling performances of two different mortars formulated for an underwater setting, and which contain Mg(OH)2 as an antifouling agent. Regarding the mechanical characterization, the uniaxial compressive strength and flexural strength were measured. The composition of the materials was explored by differential thermal/thermogravimetric analysis (DTA-TG), X-ray diffraction analysis (XRPD), and scanning electronic microscopy (SEM) coupled with EDS microanalysis. The assessment of the biological colonization was evaluated with colorimetric analysis and image analysis. The results suggest that both mortars have good mechanical resistance once set underwater. Moreover, the adding of Mg(OH)2 improves the resistance toward biofouling; this was observed both in laboratory and sea-exposed specimens.

10.
Materials (Basel) ; 15(11)2022 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-35683303

RESUMO

Biodeterioration is an increasingly widespread process of degradation in the context of the conservation of cultural heritage, which involves a combination of physical and chemical damages together with an aesthetic alteration of materials. For biological damage on monuments caused by pathogens, macro- and microorganisms, chemical treatments are generally used, most of the time dangerous for the environment and for the operator. In this context, new eco-friendly products represent necessary tools for the treatment of biologically deteriorated stone surfaces and represent a new challenge in the field of restoration and conservation of materials of cultural interest. A relatively new class of unconventional green solvents are deep eutectic solvents (DESs), which have peculiar chemical-physical characteristics such as being non-toxic, ecological, biodegradable, non-flammable, and stable in the presence of water. Furthermore, many DESs known in the literature have also been shown to have a biocidal action. All these characteristics make DESs very advantageous and safe, and they could be used as biocidal agents for the treatment of biodegraded surfaces of cultural heritage, being non-toxic for the environment and for the operator. So far, they are used in various fields, but they still represent a novel frontier in the cultural heritage sector. The present research aims at testing five different DESs for the first time in cultural heritage. In particular, DESs are applied to a mosaic located in the Ostia Antica Archaeological Park (Rome), and their efficiency is compared with a biocide product currently used in the restoration field, namely, Preventol RI50, through luminescence, bio-luminometry, and spectrocolorimetry analysis. The preliminary results achieved show the different behaviors of each DESs, highlighting the possibility of employing them in the field of cultural heritage. Further studies have been planned, some of which are already underway, to investigate the properties of DESs and indicate any improvements to make them more effective, both as solvents and as biocides, and easy to apply to various types of materials. The results obtained from this first study are very promising for the use of DES as a new green strategy for cleaning and conservation treatments of materials in the field of cultural heritage.

11.
Methods Protoc ; 5(3)2022 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-35736553

RESUMO

In this study, the investigation of the oil painting on canvas I Tesori del Mare made by Plinio Nomellini in 1901 is presented. The aim of the research was threefold: the examination of the state of conservation in view of the restoration treatment, together with the identification of the causes of degradation and the study of the artistic technique. During the years, the artwork underwent several cleaning and fixing interventions, resulting in a patchy appearance of the surface. Nevertheless, the presence of consistent liftings persists, while the protective coating shows uneven chromatic alteration, both requiring further analysis. Multispectral imaging allowed for better visualization of the figuration's structure and the restored areas. The combined use of Raman spectroscopy, Fourier Transform Infrared spectroscopy in the Attenuated Total Reflection mode (FT-IR ATR), and Scanning Electron Microscopy coupled with an Energy Dispersive Spectroscopy (SEM/EDS) enabled better understanding of the stratigraphy through the identification of some pigments, the binder, and the aged varnish layer on the top. SEM/EDS highlighted the presence of zinc in both the ground layer and the paint layers. Furthermore, FT-IR ATR spectroscopy showed peaks related to metal soaps such as zinc stearate, which are known to cause severe delamination of the paint layers, explaining the recurring lifting issues. Eventually, the varnish layer was found to be acrylic resin, presumably mixed with varnishes applied in past restoration treatments.

12.
Polymers (Basel) ; 14(20)2022 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-36297864

RESUMO

Mattel's Barbie dolls are the most famous and iconic dolls since 1959. Today, they are being collected by individuals and often conserved in museum environments due to their cultural and historical significance reflecting everyday life and historical events. However, just like most museum objects made of plastics, both historical and more recent Barbies show evident degradation phenomena. Firstly, Barbies were made of plasticized polyvinyl chloride (PVC), affected by the migration of additives-mostly the plasticizers-from the bulk phase to the outermost layer, appearing as a tacky and glossy exudate. Over the years, Barbies' polymeric constituents were replaced with more stable ones, whose additives migration is limited compared to PVC, even though still occurring. Multispectral photography in visible (VIS) and ultraviolet (UV) light, microscopical observations in VIS and UV light, and Fourier Transform Infrared spectroscopy in the Attenuated Total Reflectance mode (FT-IR ATR) were performed to characterize the constituent materials of 15 Barbies produced between 1959 and 1976, bridging the information gap on their processing over the years. The micro-invasive multi-analytical approach also allowed for the characterization of the degradation products, permitting the reference of the exudated compound to the specific bulk polymer.

13.
Materials (Basel) ; 15(16)2022 Aug 18.
Artigo em Inglês | MEDLINE | ID: mdl-36013809

RESUMO

Biodegradation is among the most common issues affecting Cultural Heritage stone materials in outdoor environments. In recent years, the application of chemical agents with biocidal activity has been the most usual practice when dealing with biofilm removal. In outdoor environments, the use of these biocides is not effective enough, since the materials are constantly exposed to environmental agents and atmospheric pollutants. Thus, it becomes necessary to protect the surface of Cultural Heritage works with antimicrobial coatings to either prevent or at least limit future colonization. In this study, innovative biocides-both natural and synthetic-were applied on a Roman mosaic located in the Archaeological Park of Ostia Antica to compare their effectiveness in removing the biological degradation affecting it. In addition, an antimicrobial coating called "SI-QUAT" was applied and analyzed in situ. SI-QUAT has recently entered the market for its prevention activity against biocolonization. The biocidal activity of these products was tested and monitored using different analytical portable instruments, such as the multispectral system, the spectrocolorimeter, and the bioluminometer. The analyses showed that promising results can be obtained using the combination of the biocide and the protective effect of Preventol® RI50 and SI-QUAT.

14.
Environ Sci Pollut Res Int ; 29(20): 29478-29497, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-34389953

RESUMO

In this study, a multimethodological analysis involving optical and physical/chemical diagnostic techniques and 3D photogrammetric survey was successfully applied, for the first time, on the large oil on canvas St. Michael defeating Evil painting by Mattia Preti, located inside the Church of the Immaculate Conception of Sarria (Floriana) in Malta. Pigmenting agents, binder media, and raw materials were first characterized, both at elemental and molecular scales, through X-ray fluorescence spectroscopy (XRF), optical stereo microscopy (SM), scanning electron microscopy coupled with energy dispersive X-ray spectroscopy (SEM-EDX), Fourier transform infrared spectroscopy (FT-IR), and gas chromatography coupled with mass spectrometry (GC-MS). The main goal was to properly identify the execution technique of this famous painter, the artist's palette, and possible nondocumented interventions. The 3D photogrammetric survey, on the other side, allowed us to noninvasively evaluate the extension of the areas that experienced restorations, and to properly map the domains of the different canvasses observed. The joints between canvasses suggested that the painting was folded and rolled up. In addition, the employment of a thermal camera gave evidence of the different consolidating material injection points used during the restoration to strengthen the painting. The obtained results offer useful information for the development of optimized restoration and conservation strategies to be applied and provide, at the same time, answers to open questions related to provenance and dating of the investigated artwork.


Assuntos
Pinturas , Microscopia Eletrônica de Varredura , Pinturas/história , Espectrometria por Raios X/instrumentação , Espectrometria por Raios X/métodos , Espectroscopia de Infravermelho com Transformada de Fourier/instrumentação , Espectroscopia de Infravermelho com Transformada de Fourier/métodos
15.
Polymers (Basel) ; 14(1)2021 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-35012184

RESUMO

Urban art is a form of artistic visual expression and communication that is created in the street and generally in the public dimension of urban spaces. Often these kinds of artworks are in outdoor environments, and they usually suffer from atmospheric weathering and anthropic vandalism. Recently, several strategies have been used to limit or remove the effects of such vandalism. Currently, the use of quartz paints is growing among artists; such paints after setting are more porous and rough on the surface with respect to regular paints. The aim of the study is to assess the performance of anti-graffiti coatings on quartz artworks paints. Two anti-graffiti products were chosen, and their behaviors were assessed in the laboratory by means of contact angle measurement, water capillary test, colorimetric analysis, and optical and electron microscopy. Results showed good water repellence efficacy of the tested products, demonstrating that they are suitable for the protection of urban art, but at least two applications on the surface are needed to achieve good performance.

16.
Sci Total Environ ; 764: 142905, 2021 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-33127125

RESUMO

In the last decades, many researchers investigated the relation between environmental pollution and the degradation phenomena on the built heritage, because of their rapid increase and growing harmfulness. Consequently, the identification of the main pollution sources has become essential to define mitigation actions against degradation and alteration phenomena of the stone materials. In this way, the present paper is focused on the study of the effect of air pollution on archaeological buildings in Historic Cairo. A multi-methodological approach was used to obtain information about the chemical composition of examined black crusts and to clarify their correlation with the air pollution, specifically the heavy metals and the carbonaceous fraction, their main sources, and their impact on the state of conservation of the studied sites. All specimens were characterized by polarized optical microscopy (POM), X-Ray Diffraction (XRD), Electron Probe Micro Analyser coupled with energy dispersive X-ray spectrometry (EPMA-EDS), laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) and Thermo-gravimetric analysis (TGA). The study conducted on heavy metals and carbonaceous fraction showed that the greatest contribution of the accumulation of pollutants is attributable to vehicular traffic and industrial activities, the main polluting sources in Cairo city. Furthermore, the comparison with other studies conducted on the carbonaceous fraction in the black crusts coming from both European and non-European cities, has allowed to discriminate the contribution of the primary and secondary polluting sources. Finally, the correlation of the data obtained on the heavy metals and the carbonaceous fraction allowed to formulate important hypothesis about the processes of sulphation.

17.
Front Mol Biosci ; 8: 794946, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34957222

RESUMO

Antarctica represents a unique natural laboratory for ecotoxicological studies as it is characterized by low internal pollutants emissions but high external contamination levels. Indeed, warm temperatures promote pollutant evaporation (low latitudes), while cool temperatures (high latitudes) promote its deposition from the atmosphere on land/water. Metals are the most important pollutants in ecosystems and represent a serious and global threat to aquatic and terrestrial organisms. Since 2000, the risks posed by metals have led many States to ratify protocols aimed at reducing their emissions. Endemic Antarctic organisms represent excellent bioindicators in order to evaluate the efficacy of global measures adopted to mitigate pollutants release into the environment. In this study (supported by PNRA18-00133), we estimated the metals contamination levels and the metallothionein-1 expression in liver samples of two Antarctic fish species, the icefish Chionodraco hamatus and the red-blooded Trematomus bernacchii, collected in the same area during 2002 and 2014. The chosen area is located in the Ross Sea, a unique area as it is also isolated from the rest of the Southern Ocean. The analysis of contamination trends throughout this period showed, in both species, a significant increase over time of metals bioaccumulation and metallothionein-1 expression. In addition, our result clearly indicated that the detoxifying ability of the two organisms analyzed greatly differs, probably due to haemoglobin presence/absence. Our work represents an important early step to obtain valuable information in conservation strategies for both Antarctic and non-Antarctic ecosystems.

18.
PLoS One ; 15(4): e0232375, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32330186

RESUMO

The Tomb of the Diver has been subject for many decades of fierce debate among archaeologists and classicists. Since its discovery in 1968, some scholars have considered it a unique example of the lost tradition of Greek painting, others have emphasized Etruscan or Italic parallels. More recently, a possible local production has been suggested. With the aim of trying to solve the archaeological question, an archaeometric comparison among this well-known artwork and several frescoed tombs coming from Hellenistic and Lucan necropolis was carried out. The multi-analytical study was focused on the identification of peculiar features of executive techniques and raw materials since the first period of the archaeological site. The analytical investigation has been preliminary based on a non-destructive approach, performed in-situ by portable equipment including imaging diagnostics and compositional spectroscopic techniques for identifying pigments and the conservation state of original painted surface; subsequently, a further deepening by using destructive techniques was performed in-lab for the mortar-based supports characterization. Archaeometric study suggested that technological choices slightly changed in a time span of about two centuries, highlighting important markers that allow clustering the contemporary artistic productions. Moreover, a comparison with mortars from temples decorations was provided to better understand the whole artistic context. The archaeometric data showed that the Tomb of the Diver could be traced back to a local artisanal tradition and therefore is neither Etruscan nor Greek, but the first and foremost an expression of the local elite culture of Paestum.


Assuntos
Arqueologia , Pinturas/história , História Antiga , Humanos , Itália
19.
Nat Prod Res ; 33(7): 1034-1039, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-27876424

RESUMO

Structural analysis of marble statues, carried out by non-invasive and in situ methods, is crucial to define the state of conservation of the artworks and to identify the deterioration phenomena that can affect them. In this work, we combined in situ non-destructive techniques, ultrasonic tomography (US), ultraviolet-induced visible fluorescence (UV-IF) and X-ray fluorescence (XRF) to study the bass-relief 'Madonna con Bambino' (Gorizia, Italy). The US revealed the presence of some metallic pivots, associated with areas of high sound velocity; moreover, a more degraded area has been identified in the lower part of the bass-relief. The acquired UV-IF image confirmed the presence of surface degradation, allowing a preliminary evaluation of the extension of a fracture, from surface to bulk. In addition, the different materials (both original and/or integrations) that compose the studied surface have been identified. The XRF has contributed to define the nature of the inorganic materials applied during undocumented previous restoration works on the surface as filler for lacunae.


Assuntos
Arte , Carbonato de Cálcio , Escultura , Fluorescência , Itália , Métodos , Propriedades de Superfície
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA