RESUMO
Interleukin-2 (IL-2) is a critical cytokine for T cell peripheral tolerance and immunity. Here, we review how IL-2 interaction with the high-affinity IL-2 receptor (IL-2R) supports the development and homeostasis of regulatory T cells and contributes to the differentiation of helper, cytotoxic, and memory T cells. A critical element for each T cell population is the expression of CD25 (Il2rα), which heightens the receptor affinity for IL-2. Signaling through the high-affinity IL-2R also reinvigorates CD8+ exhausted T (Tex) cells in response to checkpoint blockade. We consider the molecular underpinnings reflecting how IL-2R signaling impacts these various T cell subsets and the implications for enhancing IL-2-dependent immunotherapy of autoimmunity, other inflammatory disorders, and cancer.
Assuntos
Interleucina-2 , Neoplasias , Humanos , Interleucina-2/metabolismo , Autoimunidade , Receptores de Interleucina-2 , Subpopulações de Linfócitos TRESUMO
IgA binding dictates the composition of the intestinal microbiome and reflects dysbiotic states during chronic disease. Both pathogenic and commensal bacteria differentially bind to IgA with varying outcomes. Little is known regarding IgA dynamics immediately following microbial dysbiosis. Recent work shows that morphine treatment rapidly induces microbial dysbiosis within hours of administration. This microbial shift is characterized by the expansion of pathogenic bacteria with a concurrent decrease in commensal bacteria. Because of this rapid microbial shift, a murine model of chronic morphine treatment was used to gain insight on the host IgA response during early microbial disruption. Within 24 h, morphine treatment induces microbial dysbiosis which disrupts IgA-bacterial homeostasis, resulting in an increased concentration of unbound IgA with a corresponding decrease in the frequency of IgA-bound bacteria. Additionally, the increased concentration of unbound IgA is dependent on the microbiome, as microbial depletion abolishes the increase. At 48 h of morphine treatment, the frequency of IgA-bound bacteria increases and IgA-seq reveals increased IgA targeting of gram-positive bacteria. Both a whole-body TLR2 KO and treatment with the TLR inhibitor OxPAPC resulted in abrogation of IgA binding to bacteria, implicating modulation of IgA binding through TLR signaling. Finally, we identify that a sub-population of IgA+ B cells in the intestinal lamina propria has increased CD11b and TLR2 expression at 24 h of morphine treatment which could be a potential source of the observed IgA that targets gram-positive bacteria. Together, we demonstrate for the first time the role of TLR2 in IgA targeting of intestinal bacteria, and this study sheds light on the IgA dynamics during the initial hours of microbial dysbiosis.
Assuntos
Antígeno CD11b , Disbiose , Microbioma Gastrointestinal , Bactérias Gram-Positivas , Imunoglobulina A , Camundongos Endogâmicos C57BL , Camundongos Knockout , Morfina , Receptor 2 Toll-Like , Regulação para Cima , Animais , Receptor 2 Toll-Like/metabolismo , Receptor 2 Toll-Like/genética , Disbiose/microbiologia , Disbiose/induzido quimicamente , Disbiose/imunologia , Microbioma Gastrointestinal/efeitos dos fármacos , Morfina/farmacologia , Camundongos , Antígeno CD11b/metabolismo , Imunoglobulina A/metabolismo , Imunoglobulina A/imunologia , Bactérias Gram-Positivas/efeitos dos fármacos , Regulação para Cima/efeitos dos fármacos , Linfócitos B/imunologia , Linfócitos B/efeitos dos fármacos , Linfócitos B/metabolismo , MasculinoRESUMO
BACKGROUND: Immune checkpoint inhibitors (ICI) have dramatically improved the life expectancy of patients with metastatic melanoma. However, about half of the patient population still present resistance to these treatments. We have previously shown Notch1 contributes to a non-inflamed TME in melanoma that reduces the response to ICI. Here, we addressed the therapeutic effects of a novel anti-Notch1 neutralizing antibody we produced, alone and in combination with immune checkpoint inhibition in melanoma models. METHODS: Anti-Notch1 was designed to interfere with ligand binding. Mice were immunized with a peptide encompassing EGF-like repeats 11-15 of human Notch1, the minimal required region that allows ligand binding and Notch1 activation. Positive clones were expanded and tested for neutralizing capabilities. Anti-Notch1-NIC was used to determine whether anti-Notch1 was able to reduce Notch1 cleavage; while anti-SNAP23 and BCAT2 were used as downstream Notch1 and Notch2 targets, respectively. K457 human melanoma cells and the YUMM2.1 and 1.7 syngeneic mouse melanoma cells were used. Cell death after anti-Notch1 treatment was determined by trypan blue staining and compared to the effects of the gamma-secretase inhibitor DBZ. 10 mg/kg anti-Notch1 was used for in vivo tumor growth of YUMM2.1 and 1.7 cells. Tumors were measured and processed for flow cytometry using antibodies against major immune cell populations. RESULTS: Anti-Notch1 selectively inhibited Notch1 but not Notch2; caused significant melanoma cell death in vitro but did not affect normal melanocytes. In vivo, it delayed tumor growth without evident signs of gastro-intestinal toxicities; and importantly promoted an inflamed TME by increasing the cytotoxic CD8+ T cells while reducing the tolerogenic Tregs and MDSCs, resulting in enhanced efficacy of anti-PD-1. CONCLUSIONS: Anti-Notch1 safely exerts anti-melanoma effects and improves immune checkpoint inhibitor efficacy. Thus, anti-Notch1 could represent a novel addition to the immunotherapy repertoire for melanoma.
Assuntos
Anticorpos Neutralizantes , Imunoterapia , Melanoma , Receptor Notch1 , Animais , Camundongos , Receptor Notch1/antagonistas & inibidores , Receptor Notch1/metabolismo , Receptor Notch1/imunologia , Humanos , Melanoma/tratamento farmacológico , Melanoma/imunologia , Melanoma/patologia , Melanoma/terapia , Imunoterapia/métodos , Anticorpos Neutralizantes/farmacologia , Anticorpos Neutralizantes/imunologia , Anticorpos Neutralizantes/uso terapêutico , Microambiente Tumoral , Linhagem Celular Tumoral , FemininoRESUMO
BACKGROUND: Development of interleukin (IL)-2-dependent antitumor responses focus on targeting the intermediate affinity IL-2R to stimulate memory-phenotypic CD8+ T and natural killer (NK) cells while minimizing regulatory T cell (Treg) expansion. However, this approach may not effectively engage tumor-specific T effector cells. Since tumor-antigen specific T cells upregulate the high-affinity IL-2R, we tested an IL-2 biologic, mouse IL-2/CD25, with selectivity toward the high-affinity IL-2R to support antitumor responses to tumors that vary in their immunogenicity. METHODS: Mice were first implanted with either CT26, MC38, B16.F10, or 4T1 and after a tumor mass developed, they were treated with high-dose (HD) mouse (m)IL-2/CD25 alone or in combination with anti-programmed cell death protein-1 (PD-1) checkpoint blockade. Tumor growth was monitored and in parallel the immune signature in the tumor microenvironment (TME) was determined by a combination of multiparameter flow cytometry, functional assays, and enumeration of tumor-reactive T cells. RESULTS: We show that HD mIL-2/CD25, which preferentially stimulates the high-affinity IL-2R, but not IL-2/anti-IL-2 complexes with preferential activity toward the intermediate-affinity IL-2R, supports vigorous antitumor responses to immunogenic tumors as a monotherapy that were enhanced when combined with anti-PD-1. Treatment of CT26-bearing mice with HD mIL-2/CD25 led to a high CD8+:Treg ratio in the TME, increased frequency and function of tumor-specific CD8+ T effector cells with a less exhausted phenotype, and antitumor memory responses. CONCLUSIONS: Targeting the high-affinity IL-2R on tumor-specific T cells with HD mIL-2/CD25 alone or with PD-1 blockade supports antitumor responses, where the resulting memory response may afford long-term protection against tumor re-emergence.
Assuntos
Linfócitos T CD8-Positivos , Neoplasias , Camundongos , Animais , Neoplasias/tratamento farmacológico , Neoplasias/metabolismo , Linfócitos T Reguladores , Células Matadoras Naturais , Imunoterapia , Microambiente TumoralRESUMO
Preclinical studies of the T cell growth factor activity of IL-2 resulted in this cytokine becoming the first immunotherapy to be approved nearly 30 years ago by the US Food and Drug Administration for the treatment of cancer. Since then, we have learnt the important role of IL-2 in regulating tolerance through regulatory T cells (Treg cells) besides promoting immunity through its action on effector T cells and memory T cells. Another pivotal event in the history of IL-2 research was solving the crystal structure of IL-2 bound to its tripartite receptor, which spurred the development of cell type-selective engineered IL-2 products. These new IL-2 analogues target Treg cells to counteract the dysregulated immune system in the context of autoimmunity and inflammatory disorders or target effector T cells, memory T cells and natural killer cells to enhance their antitumour responses. IL-2 biologics have proven to be effective in preclinical studies and clinical assessment of some is now underway. These studies will soon reveal whether engineered IL-2 biologics are truly capable of harnessing the IL-2-IL-2 receptor pathway as effective monotherapies or combination therapies for autoimmunity and cancer.
Assuntos
Produtos Biológicos , Neoplasias , Autoimunidade , Produtos Biológicos/farmacologia , Humanos , Fatores Imunológicos , Imunoterapia/métodos , Interleucina-2/uso terapêutico , Receptores de Interleucina-2 , Linfócitos T ReguladoresRESUMO
BACKGROUND: Immunization with tumor neoantigens is a promising vaccine approach to promote antitumor immunity due to their high immunogenicity, lack of expression in normal tissue, and preferential induction of tumor neoantigen-specific T cells, which are central mediators of the anti-cancer response. A drawback to targeting tumor neoantigen-specific T cells is that these cells are found at a low frequency in patients with cancer, limiting their therapeutic benefit. Interleukin-2 (IL-2) promotes expansion and persistence of tumor-reactive T cells. However, its clinical use has been hampered by toxicities arising from its multiple cellular targets. Thus, new engineered IL-2 receptor (IL-2R) agonists with distinctive cell type selectivity have been designed to harness the potential of IL-2 for tumor immunotherapy. METHODS: We investigated the potential to amplify neoantigen-specific CD4+ and CD8+ T cell immune responses to promote antitumor immunity through vaccination with tumor neoantigens. Following T cell receptor (TCR)-mediated induction of the high-affinity IL-2R on these T cells, amplification of the neoantigen-specific T cell response was achieved using a high dose of the mouse IL-2/CD25 (mIL-2/CD25) fusion protein, an IL-2R agonist with more favorable pharmacokinetics and pharmacodynamics than IL-2 and selectivity toward the high-affinity IL-2R. RESULTS: Administration of a high dose of mIL-2/CD25 shortly after antigen-dependent induction of the high-affinity IL-2R amplified the numbers and function of TCR transgenic tumor-reactive tyrosinase-related protein-1 (TRP-1) CD4+ T cells, leading to antitumor immunity to B16-F10 melanoma. This approach was adapted to amplify endogenous polyclonal B16-F10 neoantigen-specific T cells. Maximal expansion of these cells required prime/boost neoantigen vaccinations, where mIL-2/CD25 was optimal when administered only after the boosting steps. The ensuing mIL-2/CD25-driven immune response supported antitumor immunity to B16-F10 and was more effective than treatment with a similar amount of IL-2. Optimal antitumor effects required amplification of CD4+ and CD8+ neoantigen-specific T cells. High-dose mIL-2/CD25 supported a tumor microenvironment with higher numbers of CD4+ and CD8+ T effectors cells with increased granzyme B expression and importantly a more robust expansion of neoantigen-specific T cells. CONCLUSION: These results indicate that neoantigen-based vaccines are optimized by potentiating IL-2R signaling in CD4+ and CD8+ neoantigen-reactive T cells by using high-dose mIL-2/CD25, leading to more effective tumor clearance.