Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Assunto principal
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Mol Biol Rep ; 50(8): 7105-7111, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37326748

RESUMO

BACKGROUND: A novel virulent bacteriophage infecting phytobacteria Pseudomonas cichorii (P. cichorii) was isolated from leafy vegetables in Brazil. P. cichorii is a Gram-negative soil phytobacterium, the causal agent of a number of economically important plant diseases worldwide. METHODS AND RESULTS: In this study, a new phage specific for P. cichorii was isolated from solid samples (lettuce, chicory and cabbage), designated vB_Pci_PCMW57. Electron microscopy revealed a small virion (~ 50-nm-diameter icosahedral capsid) with a short, non-contractile tail. The genome of vB_Pci_PCMW57 is 40,117 bp in size, with a GC content of 57.6% and encodes 49 open reading frames. The phage is genetically similar to P. syringae phages Pst_GM1 and Pst_GIL1, and the P. fluorescens phages WRT and KNP. According to electron microscopy and whole-genome sequence analysis, vB_Pci_PCMW57 should be classified as a Caudoviticetes, family Autographiviridae, subfamily Studiervirinae. CONCLUSIONS: The complete phage genome was annotated, and the sequence identity of the virus with other Pseudomonas viruses was higher than 95%. To our knowledge, this is the first report of a bacteriophage infecting Pseudomonas cichorii.


Assuntos
Bacteriófagos , Bacteriófagos/genética , Genoma Viral , Análise de Sequência de DNA , Pseudomonas/genética , Fases de Leitura Aberta/genética , Filogenia
2.
Sci Rep ; 11(1): 3248, 2021 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-33547393

RESUMO

This manuscript reports room-temperature one-step synthesis of earth-abundant semiconductor ZnSiN2 on amorphous carbon substrates using radio frequency reactive magnetron co-sputtering. Transmission Electron Microscopy and Rutherford Backscattering Spectrometry analysis demonstrated that the synthesis has occurred as ZnSiN2 nanocrystals in the orthorhombic phase, uniformly distributed on amorphous carbon. The technique of large-area deposition on an amorphous substrate can be interesting for flexible electronics technologies. Our results open possibilities for environmentally friendly semiconductor devices, leading to the development of greener technologies.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA