Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
BMC Plant Biol ; 18(1): 172, 2018 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-30115030

RESUMO

BACKGROUND: The objective of this research was to map quantitative trait loci (QTLs) of multiple traits of breeding importance in pea (Pisum sativum L.). Three recombinant inbred line (RIL) populations, PR-02 (Orb x CDC Striker), PR-07 (Carerra x CDC Striker) and PR-15 (1-2347-144 x CDC Meadow) were phenotyped for agronomic and seed quality traits under field conditions over multiple environments in Saskatchewan, Canada. The mapping populations were genotyped using genotyping-by-sequencing (GBS) method for simultaneous single nucleotide polymorphism (SNP) discovery and construction of high-density linkage maps. RESULTS: After filtering for read depth, segregation distortion, and missing values, 2234, 3389 and 3541 single nucleotide polymorphism (SNP) markers identified by GBS in PR-02, PR-07 and PR-15, respectively, were used for construction of genetic linkage maps. Genetic linkage groups were assigned by anchoring to SNP markers previously positioned on these linkage maps. PR-02, PR-07 and PR-15 genetic maps represented 527, 675 and 609 non-redundant loci, and cover map distances of 951.9, 1008.8 and 914.2 cM, respectively. Based on phenotyping of the three mapping populations in multiple environments, 375 QTLs were identified for important traits including days to flowering, days to maturity, lodging resistance, Mycosphaerella blight resistance, seed weight, grain yield, acid and neutral detergent fiber concentration, seed starch concentration, seed shape, seed dimpling, and concentration of seed iron, selenium and zinc. Of all the QTLs identified, the most significant in terms of explained percentage of maximum phenotypic variance (PVmax) and occurrence in multiple environments were the QTLs for days to flowering (PVmax = 47.9%), plant height (PVmax = 65.1%), lodging resistance (PVmax = 35.3%), grain yield (PVmax = 54.2%), seed iron concentration (PVmax = 27.4%), and seed zinc concentration (PVmax = 43.2%). CONCLUSION: We have identified highly significant and reproducible QTLs for several agronomic and seed quality traits of breeding importance in pea. The QTLs identified will be the basis for fine mapping candidate genes, while some of the markers linked to the highly significant QTLs are useful for immediate breeding applications.


Assuntos
Ascomicetos/fisiologia , Mapeamento Cromossômico , Ligação Genética , Genótipo , Pisum sativum/genética , Locos de Características Quantitativas , Resistência à Doença/genética , Pisum sativum/fisiologia , Fenótipo , Doenças das Plantas/microbiologia , Polimorfismo de Nucleotídeo Único
2.
PLoS One ; 16(11): e0251167, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34735457

RESUMO

Field pea (Pisum sativum L.), a cool-season legume crop, is known for poor heat tolerance. Our previous work identified PR11-2 and PR11-90 as heat tolerant and susceptible lines in a recombinant inbred population. CDC Amarillo, a Canadian elite pea variety, was considered as another heat tolerant variety based on its similar field performance as PR11-2. This study aimed to characterize the differential transcription. Plants of these three varieties were stressed for 3 h at 38°C prior to self-pollination, and RNAs from heat stressed anthers and stipules on the same flowering node were extracted and sequenced via the Illumina NovaSeq platform for the characterization of heat responsive genes. In silico results were further validated by qPCR assay. Differentially expressed genes (DEGs) were identified at log2 |fold change (FC)| ≥ 2 between high temperature and control temperature, the three varieties shared 588 DEGs which were up-regulated and 220 genes which were down-regulated in anthers when subjected to heat treatment. In stipules, 879 DEGs (463/416 upregulation/downregulation) were consistent among varieties. The above heat-induced genes of the two plant organs were related to several biological processes i.e., response to heat, protein folding and DNA templated transcription. Ten gene ontology (GO) terms were over-represented in the consistently down-regulated DEGs of the two organs, and these terms were mainly related to cell wall macromolecule metabolism, lipid transport, lipid localization, and lipid metabolic processes. GO enrichment analysis on distinct DEGs of individual pea varieties suggested that heat affected biological processes were dynamic, and variety distinct responses provide insight into molecular mechanisms of heat-tolerance response. Several biological processes, e.g., cellular response to DNA damage stimulus in stipule, electron transport chain in anther that were only observed in heat induced PR11-2 and CDC Amarillo, and their relevance to field pea heat tolerance is worth further validation.


Assuntos
Flores , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Genes de Plantas , Resposta ao Choque Térmico , Pisum sativum , Flores/genética , Flores/metabolismo , Pisum sativum/genética , Pisum sativum/metabolismo
3.
Front Plant Sci ; 10: 323, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30930928

RESUMO

Whole genome profiling (WGP) is a sequence-based physical mapping technology and uses sequence tags generated by next generation sequencing for construction of bacterial artificial chromosome (BAC) contigs of complex genomes. The physical map provides a framework for assembly of genome sequence and information for localization of genes that are difficult to find through positional cloning. To address the challenges of accurate assembly of the pea genome (∼4.2 GB of which approximately 85% is repetitive sequences), we have adopted the WGP technology for assembly of a pea BAC library. Multi-dimensional pooling of 295,680 BAC clones and sequencing the ends of restriction fragments of pooled DNA generated 1,814 million high quality reads, of which 825 million were deconvolutable to 1.11 million unique WGP sequence tags. These WGP tags were used to assemble 220,013 BACs into contigs. Assembly of the BAC clones using the modified Fingerprinted Contigs (FPC) program has resulted in 13,040 contigs, consisting of 213,719 BACs, and 6,294 singleton BACs. The average contig size is 0.33 Mbp and the N50 contig size is 0.62 Mbp. WGPTM technology has proved to provide a robust physical map of the pea genome, which would have been difficult to assemble using traditional restriction digestion based methods. This sequence-based physical map will be useful to assemble the genome sequence of pea. Additionally, the 1.1 million WGP tags will support efficient assignment of sequence scaffolds to the BAC clones, and thus an efficient sequencing of BAC pools with targeted genome regions of interest.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA