Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Small ; 12(43): 5963-5970, 2016 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-27624455

RESUMO

DNA replication is essential to maintain genome integrity in S phase of the cell division cycle. Accumulation of stalled replication forks is a major source of genetic instability, and likely constitutes a key driver of tumorigenesis. The mechanisms of regulation of replication fork progression have therefore been extensively investigated, in particular with DNA combing, an optical mapping technique that allows the stretching of single molecules and the mapping of active region for DNA synthesis by fluorescence microscopy. DNA linearization in nanochannels has been successfully used to probe genomic information patterns along single chromosomes, and has been proposed to be a competitive alternative to DNA combing. Yet this conjecture remains to be confirmed experimentally. Here, two complementary techniques are established to detect the genomic distribution of tracks of newly synthesized DNA in human cells by optical mapping in nanochannels. Their respective advantages and limitations are compared, and applied them to detect deregulations of the replication program induced by the antitumor drug hydroxyurea. The developments here thus broaden the field of applications accessible to nanofluidic technologies, and can be used in the future as part for molecular diagnostics in the context of high throughput cancer drug screening.


Assuntos
Replicação do DNA , Nanopartículas/química , Imagem Óptica/métodos , Difusão , Humanos , Microscopia de Força Atômica , Nanopartículas/ultraestrutura , Espectrometria por Raios X , Compostos de Vanádio/química
2.
J Biol Inorg Chem ; 20(4): 729-38, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25846142

RESUMO

With the aim of finding selective and biologically active G-quadruplex ligands, modified porphyrin with bulky cationic substituents, meso-5,10,15,20-tetrakis(4-guanidinophenyl)porphyrin tetrahydrochloride, referred to as guanidinium phenyl porphyrin, was prepared. The corresponding nickel(II) and cobalt(III) metallated porphyrins were also synthesized. Interaction with quadruplexes was examined by means of fluorescence resonance energy transfer melting and surface plasmon resonance-based assays: the three compounds proved to bind to G-quadruplex DNA in a similar and highly selective way. Guanidinium phenyl porphyrin and its nickel(II) metallated derivative exhibit moderate cytotoxicity toward cells in culture. Strikingly, the nickel porphyrin derivative was able to displace hPOT1 shelterin protein from telomeres in human cells. Nickel(II) guanidinium phenyl porphyrin, a cationic bulky porphyrin is a powerful specific G-quadruplex DNA ligand. It enters the cells and induces shelterin modification.


Assuntos
Quadruplex G/efeitos dos fármacos , Guanidina/química , Metaloporfirinas/farmacologia , Níquel/química , Porfirinas/química , Proteínas de Ligação a Telômeros/metabolismo , Telômero/efeitos dos fármacos , Sítios de Ligação/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Dicroísmo Circular , Cobalto/química , Relação Dose-Resposta a Droga , Transferência Ressonante de Energia de Fluorescência , Humanos , Ligantes , Metaloporfirinas/síntese química , Metaloporfirinas/química , Estrutura Molecular , Transporte Proteico/efeitos dos fármacos , Complexo Shelterina , Relação Estrutura-Atividade , Ressonância de Plasmônio de Superfície , Células Tumorais Cultivadas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA