Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 115(19): E4416-E4425, 2018 05 08.
Artigo em Inglês | MEDLINE | ID: mdl-29686083

RESUMO

Despite numerous studies suggesting that amphibians are highly sensitive to endocrine disruptors (EDs), both their role in the decline of populations and the underlying mechanisms remain unclear. This study showed that frogs exposed throughout their life cycle to ED concentrations low enough to be considered safe for drinking water, developed a prediabetes phenotype and, more commonly, a metabolic syndrome. Female Xenopus tropicalis exposed from tadpole stage to benzo(a)pyrene or triclosan at concentrations of 50 ng⋅L-1 displayed glucose intolerance syndrome, liver steatosis, liver mitochondrial dysfunction, liver transcriptomic signature, and pancreatic insulin hypersecretion, all typical of a prediabetes state. This metabolic syndrome led to progeny whose metamorphosis was delayed and occurred while the individuals were both smaller and lighter, all factors that have been linked to reduced adult recruitment and likelihood of reproduction. We found that F1 animals did indeed have reduced reproductive success, demonstrating a lower fitness in ED-exposed Xenopus Moreover, after 1 year of depuration, Xenopus that had been exposed to benzo(a)pyrene still displayed hepatic disorders and a marked insulin secretory defect resulting in glucose intolerance. Our results demonstrate that amphibians are highly sensitive to EDs at concentrations well below the thresholds reported to induce stress in other vertebrates. This study introduces EDs as a possible key contributing factor to amphibian population decline through metabolism disruption. Overall, our results show that EDs cause metabolic disorders, which is in agreement with epidemiological studies suggesting that environmental EDs might be one of the principal causes of metabolic disease in humans.


Assuntos
Benzo(a)pireno/toxicidade , Doença Hepática Induzida por Substâncias e Drogas/metabolismo , Extinção Biológica , Intolerância à Glucose , Triclosan/toxicidade , Xenopus/metabolismo , Animais , Feminino , Intolerância à Glucose/induzido quimicamente , Intolerância à Glucose/metabolismo , Larva/metabolismo , Metamorfose Biológica/efeitos dos fármacos
2.
Front Vet Sci ; 10: 1184296, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37396987

RESUMO

Research on fish cognition provides strong evidence that fish are endowed with high level cognitive skills. However, most studies on cognitive flexibility and generalization abilities, two key adaptive traits for captive animals, focused on model species, and farmed fish received too little attention. Environmental enrichment was shown to improve learning abilities in various fish species, but its influence on cognitive flexibility and generalization abilities is still unknown. We studied farmed rainbow trout (Oncorhynchus mykiss) as an aquaculture model to study how environmental enrichment impacts their cognitive abilities. Using an operant conditioning device, allowing the expression of a motivated choice, we measured fish cognitive flexibility with serial reversal learning tests, after a successful acquisition phase based on two colors discrimination (2-alternative forced choice, 2-AFC), and their ability to generalize a rewarded color to any shape. Eight fish were divided into two groups: Condition E (fish reared from fry stages under enriched conditions with plants, rocks and pipes for ~9 months); Condition B (standard barren conditions). Only one fish (condition E) failed in the habituation phase of the device and one fish (condition B) failed in the 2-AFC task. We showed that after a successful acquisition phase in which the fish correctly discriminated two colors, they all succeeded in four reversal learnings, supporting evidence for cognitive flexibility in rainbow trout. They were all successful in the generalization task. Interestingly, fish reared in an enriched environment performed better in the acquisition phase and in the reversal learning (as evidenced by fewer trials needed to reach the learning criterion), but not in the generalization task. We assume that color-based generalization may be a simpler cognitive process than discriminative learning and cognitive flexibility, and does not seem to be influenced by environmental conditions. Given the small number of individuals tested, our results may be considered as first insights into cognitive flexibility in farmed fish using an operant conditioning device, but they pave the way for future studies. We conclude that farming conditions should take into account the cognitive abilities of fish, in particular their cognitive flexibility, by allowing them to live in an enriched environment.

3.
Sci Total Environ ; 689: 149-159, 2019 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-31271984

RESUMO

Numerous studies suggest that amphibians are highly sensitive to endocrine disruptors (ED) but their precise role in population decline remains unknown. This study shows that frogs exposed to a mixture of ED throughout their life cycle, at environmentally relevant concentrations, developed an unexpected metabolic syndrome. Female Silurana (Xenopus) tropicalis exposed to a mixture of benzo[a]pyrene and triclosan (50 ng·L-1 each) from the tadpole stage developed liver steatosis and transcriptomic signature associated with glucose intolerance syndrome, and pancreatic insulin hyper secretion typical of pre-diabetes. These metabolic disorders were associated with delayed metamorphosis and developmental mortality in their progeny, both of which have been linked to reduced adult recruitment and reproductive success. Indeed, F1 females were smaller and lighter and presented reduced reproductive capacities, demonstrating a reduced fitness of ED-exposed Xenopus. Our results confirm that amphibians are highly sensitive to ED even at concentrations considered to be safe for other animals. This study demonstrates that ED might be considered as direct contributing factors to amphibian population decline, due to their disruption of energetic metabolism.


Assuntos
Benzo(a)pireno/toxicidade , Disruptores Endócrinos/toxicidade , Doenças Metabólicas/veterinária , Metamorfose Biológica/efeitos dos fármacos , Triclosan/toxicidade , Xenopus/metabolismo , Animais , Relação Dose-Resposta a Droga , Feminino , Fígado/efeitos dos fármacos , Fígado/fisiologia , Fígado/fisiopatologia , Doenças Metabólicas/induzido quimicamente , Doenças Metabólicas/metabolismo , Síndrome Metabólica/induzido quimicamente , Síndrome Metabólica/metabolismo , Síndrome Metabólica/veterinária , Reprodução/efeitos dos fármacos , Transcriptoma
4.
BMC Evol Biol ; 8: 29, 2008 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-18226212

RESUMO

BACKGROUND: The main prediction of life-history theory is that optimal energy allocated among the traits is related to the growth, maintenance and survival. It is hypothesized that the optimal resource allocated to immune function, which generates resistance towards parasites and reduce the fitness losses caused by parasitism, is depending on other requirements for energetic resource and the benefits associated with them. The aims of this study are to investigate in a comparative way (1) how parasitism is related to fish life history traits (fecundity, longevity, mortality), (2) whether there is a trade-off between reproduction and immune investments in fish females (i.e. energetic hypothesis) and in males (i.e. immunohandicap hypothesis), (3) whether parasitism influences host immunity (spleen size) and reproduction (gonad size) in females and males. RESULTS: Data on metazoan parasites of 23 cyprinid fish species from Central Europe were used for the analyses as well as new data collected from a field study. Ectoparasite species richness was negatively correlated with the fish mortality estimated by the k-value and positively correlated with fish body size, suggesting that parasite diversity increases with fish longevity. A negative relationship between spleen size and gonad size, controlling for fish body size, was found in females but not in males. Moreover, parasite abundance was positively correlated with fish spleen size and negatively with fish gonad size in females. CONCLUSION: The comparative analyses using cyprinid fish species demonstrated that natural mortality could be considered as a factor contributing to the variability of parasite species richness and moreover, parasite species benefit from long-lived fish. The results obtained from the analyses investigating the potential trade-off between reproduction and immunity could be interpreted as an energetic trade-off between female reproduction and immune function. The lack of negative relationship between gonad size and spleen size in males did not support our prediction based on the immunohandicap hypothesis.


Assuntos
Peixes/crescimento & desenvolvimento , Peixes/parasitologia , Helmintos/crescimento & desenvolvimento , Animais , Tamanho Corporal , Europa (Continente) , Feminino , Peixes/imunologia , Gônadas/crescimento & desenvolvimento , Gônadas/parasitologia , Masculino , Tamanho do Órgão , Baço/crescimento & desenvolvimento , Baço/parasitologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA