Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
BMC Biol ; 19(1): 93, 2021 05 05.
Artigo em Inglês | MEDLINE | ID: mdl-33952264

RESUMO

BACKGROUND: Brassica oleracea includes several morphologically diverse, economically important vegetable crops, such as the cauliflower and cabbage. However, genetic variants, especially large structural variants (SVs), that underlie the extreme morphological diversity of B. oleracea remain largely unexplored. RESULTS: Here we present high-quality chromosome-scale genome assemblies for two B. oleracea morphotypes, cauliflower and cabbage. Direct comparison of these two assemblies identifies ~ 120 K high-confidence SVs. Population analysis of 271 B. oleracea accessions using these SVs clearly separates different morphotypes, suggesting the association of SVs with B. oleracea intraspecific divergence. Genes affected by SVs selected between cauliflower and cabbage are enriched with functions related to response to stress and stimulus and meristem and flower development. Furthermore, genes affected by selected SVs and involved in the switch from vegetative to generative growth that defines curd initiation, inflorescence meristem proliferation for curd formation, maintenance and enlargement, are identified, providing insights into the regulatory network of curd development. CONCLUSIONS: This study reveals the important roles of SVs in diversification of different morphotypes of B. oleracea, and the newly assembled genomes and the SVs provide rich resources for future research and breeding.


Assuntos
Brassica , Sequência de Bases , Brassica/genética , Mapeamento Cromossômico , Meristema , Melhoramento Vegetal
2.
BMC Plant Biol ; 20(1): 191, 2020 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-32375636

RESUMO

BACKGROUND: Sugar content is an important determinant of fruit sweetness, but details on the complex molecular mechanism underlying fruit sugar accumulation remain scarce. Here, we report the role of sucrose transporter (SUT) family in regulating fruit sugar accumulation in apple. RESULTS: Gene-tagged markers were developed to conduct candidate gene-based association study, and an SUT4 member MdSUT4.1 was found to be significantly associated with fruit sugar accumulation. MdSUT4.1 encodes a tonoplast localized protein and its expression level had a negative correlation with fruit sugar content. Overexpression of MdSUT4.1 in strawberry and apple callus had an overall negative impact on sugar accumulation, suggesting that it functions to remobilize sugar out of the vacuole. In addition, MdSUT4.1 is located on chromosomal region harboring a previously reported QTL for sugar content, suggesting that it is a candidate gene for fruit sugar accumulation in apple. CONCLUSIONS: MdSUT4.1 is involved in the regulation of fruit sugar accumulation in apple. This study is not only helpful for understanding the complex mechanism of fruit sugar accumulation, but it also provides molecular tools for genetic improvement of fruit quality in breeding programs of apple.


Assuntos
Malus/metabolismo , Proteínas de Membrana Transportadoras/metabolismo , Proteínas de Plantas/metabolismo , Sacarose/metabolismo , Fragaria/genética , Frutas/genética , Estudos de Associação Genética , Genoma de Planta , Proteínas de Membrana Transportadoras/genética , Proteínas de Plantas/genética
3.
Sci Rep ; 10(1): 2836, 2020 02 18.
Artigo em Inglês | MEDLINE | ID: mdl-32071340

RESUMO

Peach is an economically import fruit crop worldwide, and serves as a model species of the Rosaceae family as well. However, peach functional genomics studies are severely hampered due to its recalcitrance to regeneration and stable transformation. Here, we report a fast and efficient Agrobacterium rhizogenes-mediated transformation system in peach. Various explants, including leaf, hypocotyl and shoot, were all able to induce transgenic hairy roots, with a transformation efficiency of over 50% for hypocotyl. Composite plants were generated by infecting shoots with A. rhizogenes to induce transgenic adventitious hairy roots. The composite plant system was successfully used to validate function of an anthocyanin-related regulatory gene PpMYB10.1 in transgenic hairy roots, and two downstream genes, PpUFGT and PpGST, were strongly activated. Our stable and reproductive A. rhizogenes-mediated transformation system provides an avenue for gene function assay, genetic engineering, and investigation of root-rhizosphere microorganism interaction in peach.


Assuntos
Genoma de Planta/genética , Genômica , Plantas Geneticamente Modificadas/genética , Prunus persica/genética , Agrobacterium/genética , Antocianinas/genética , Antocianinas/metabolismo , Engenharia Genética/tendências , Folhas de Planta/genética , Folhas de Planta/crescimento & desenvolvimento , Raízes de Plantas/genética , Raízes de Plantas/crescimento & desenvolvimento , Prunus persica/crescimento & desenvolvimento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA