Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Infect Immun ; 91(9): e0025523, 2023 09 14.
Artigo em Inglês | MEDLINE | ID: mdl-37638725

RESUMO

Salmonella enterica serovar Typhimurium is a leading cause of gastroenteritis worldwide and a deadly pathogen in children, immunocompromised patients, and the elderly. Salmonella induces innate immune responses through the NLRC4 inflammasome, which has been demonstrated to have distinct roles during systemic and mucosal detections of flagellin and non-flagellin molecules. We hypothesized that NLRC4 recognition of Salmonella flagellin is the dominant protective pathway during infection. To test this hypothesis, we used wild-type, flagellin-deficient, and flagellin-overproducing Salmonella to establish the role of flagellin in mediating NLRC4-dependent host resistance during systemic and mucosal infections in mice. We observed that during the systemic phase of infection, Salmonella efficiently evades NLRC4-mediated innate immunity. During mucosal Salmonella infection, flagellin recognition by the NLRC4 inflammasome pathway is the dominant mediator of protective innate immunity. Deletion of flgM results in constitutive expression of flagellin and severely limits systemic and mucosal Salmonella infections in an NLRC4 inflammasome-dependent manner. These data establish that recognition of Salmonella's flagellin by the NLRC4 inflammasome during mucosal infection is the dominant innate protective pathway for host resistance against the enteric pathogen and that FlgM-mediated evasion of the NLRC4 inflammasome enhances virulence and intestinal tissue destruction.


Assuntos
Gastroenterite , Inflamassomos , Animais , Camundongos , Flagelina/genética , Imunidade Inata , Inflamassomos/genética , Salmonella typhimurium
2.
J Immunol ; 192(4): 1587-96, 2014 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-24442437

RESUMO

Flagellin is a potent immunogen that activates the innate immune system via TLR5 and Naip5/6, and generates strong T and B cell responses. The adaptor protein MyD88 is critical for signaling by TLR5, as well as IL-1Rs and IL-18Rs, major downstream mediators of the Naip5/6 Nlrc4-inflammasome. In this study, we define roles of known flagellin receptors and MyD88 in Ab responses generated toward flagellin. We used mice genetically deficient in flagellin recognition pathways to characterize innate immune components that regulate isotype-specific Ab responses. Using purified flagellin from Salmonella, we dissected the contribution of innate flagellin recognition pathways to promote Ab responses toward flagellin and coadministered OVA in C57BL/6 mice. We demonstrate IgG2c responses toward flagellin were TLR5 and inflammasome dependent; IgG1 was the dominant isotype and partially TLR5 and inflammasome dependent. Our data indicate a substantial flagellin-specific IgG1 response was induced through a TLR5-, inflammasome-, and MyD88-independent pathway. IgA anti-FliC responses were TLR5 and MyD88 dependent and caspase-1 independent. Unlike C57BL/6 mice, flagellin-immunized A/J mice induced codominant IgG1 and IgG2a responses. Furthermore, MyD88-independent, flagellin-induced Ab responses were even more pronounced in A/J MyD88(-/-) mice, and IgA anti-FliC responses were suppressed by MyD88. Flagellin also worked as an adjuvant toward coadministered OVA, but it only promoted IgG1 anti-OVA responses. Our results demonstrate that a novel pathway for flagellin recognition contributes to Ab production. Characterization of this pathway will be useful for understanding immunity to flagellin and the rationale design of flagellin-based vaccines.


Assuntos
Flagelina/imunologia , Fator 88 de Diferenciação Mieloide/metabolismo , Proteína Inibidora de Apoptose Neuronal/metabolismo , Receptor 5 Toll-Like/metabolismo , Animais , Caspase 1/deficiência , Caspase 1/genética , Caspase 1/metabolismo , Células Cultivadas , Flagelina/genética , Imunoglobulina A/imunologia , Imunoglobulina G/imunologia , Inflamassomos/metabolismo , Camundongos , Camundongos Endogâmicos A , Camundongos Endogâmicos C57BL , Camundongos Knockout , Fator 88 de Diferenciação Mieloide/deficiência , Fator 88 de Diferenciação Mieloide/genética , Proteína Inibidora de Apoptose Neuronal/deficiência , Proteína Inibidora de Apoptose Neuronal/genética , Ovalbumina , Receptores de IgG/metabolismo , Receptores de Interleucina-1/metabolismo , Receptores de Interleucina-18/metabolismo , Salmonella typhimurium/enzimologia , Salmonella typhimurium/genética , Receptor 5 Toll-Like/deficiência , Receptor 5 Toll-Like/genética
3.
J Biol Chem ; 288(14): 9957-9970, 2013 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-23426369

RESUMO

The enzyme acyl-CoA synthetase 1 (ACSL1) is induced by peroxisome proliferator-activated receptor α (PPARα) and PPARγ in insulin target tissues, such as skeletal muscle and adipose tissue, and plays an important role in ß-oxidation in these tissues. In macrophages, however, ACSL1 mediates inflammatory effects without significant effects on ß-oxidation. Thus, the function of ACSL1 varies in different tissues. We therefore investigated the signals and signal transduction pathways resulting in ACSL1 induction in macrophages as well as the consequences of ACSL1 deficiency for phospholipid turnover in LPS-activated macrophages. LPS, Gram-negative bacteria, IFN-γ, and TNFα all induce ACSL1 expression in macrophages, whereas PPAR agonists do not. LPS-induced ACSL1 expression is dependent on Toll-like receptor 4 (TLR4) and its adaptor protein TRIF (Toll-like receptor adaptor molecule 1) but does not require the MyD88 (myeloid differentiation primary response gene 88) arm of TLR4 signaling; nor does it require STAT1 (signal transducer and activator of transcription 1) for maximal induction. Furthermore, ACSL1 deletion attenuates phospholipid turnover in LPS-stimulated macrophages. Thus, the regulation and biological function of ACSL1 in macrophages differ markedly from that in insulin target tissues. These results suggest that ACSL1 may have an important role in the innate immune response. Further, these findings illustrate an interesting paradigm in which the same enzyme, ACSL1, confers distinct biological effects in different cell types, and these disparate functions are paralleled by differences in the pathways that regulate its expression.


Assuntos
Coenzima A Ligases/metabolismo , Bactérias Gram-Negativas/metabolismo , Lipopolissacarídeos/metabolismo , Macrófagos/metabolismo , Fosfolipídeos/metabolismo , Animais , Células da Medula Óssea/citologia , Feminino , Imunidade Inata , Interferon gama/metabolismo , MAP Quinase Quinase 4/metabolismo , Macrófagos/citologia , Macrófagos Peritoneais/citologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Modelos Biológicos , Transdução de Sinais
4.
Mol Pharmacol ; 77(5): 793-803, 2010 May.
Artigo em Inglês | MEDLINE | ID: mdl-20159950

RESUMO

Prolonged ethanol exposure causes central nervous system hyperexcitability that involves a loss of GABAergic inhibition. We previously demonstrated that long-term ethanol exposure enhances the internalization of synaptic GABA(A) receptors composed of alpha1beta2/3gamma2 subunits. However, the mechanisms of ethanol-mediated internalization are unknown. This study explored the effect of ethanol on surface expression of GABA(A) alpha1 subunit-containing receptors in cultured cerebral cortical neurons and the role of protein kinase C (PKC) beta, gamma, and epsilon isoforms in their trafficking. Cultured neurons were prepared from rat pups on postnatal day 1 and maintained for 18 days. Cells were exposed to ethanol, and surface receptors were isolated by biotinylation and P2 fractionation, whereas functional analysis was conducted by whole-cell patch-clamp recording of GABA- and zolpidem-evoked responses. Ethanol exposure for 4 h decreased biotinylated surface expression of GABA(A) receptor alpha1 subunits and reduced zolpidem (100 nM) enhancement of GABA-evoked currents. The PKC activator phorbol-12,13-dibutyrate mimicked the effect of ethanol, and the selective PKC inhibitor calphostin C prevented ethanol-induced internalization of these receptors. Ethanol exposure for 4 h also increased the colocalization and coimmunoprecipitation of PKCgamma with alpha1 subunits, whereas PKCbeta/alpha1 association and PKCepsilon/alpha1 colocalization were not altered by ethanol exposure. Selective PKCgamma inhibition by transfection of selective PKCgamma small interfering RNAs blocked ethanol-induced internalization of GABA(A) receptor alpha1 subunits, whereas PKCbeta inhibition using pseudo-PKCbeta had no effect. These findings suggest that ethanol exposure selectively alters PKCgamma translocation to GABA(A) receptors and PKCgamma regulates GABA(A) alpha1 receptor trafficking after ethanol exposure.


Assuntos
Etanol/farmacologia , Neurônios/fisiologia , Proteína Quinase C/metabolismo , Receptores de GABA-A/fisiologia , Animais , Western Blotting , Córtex Cerebral/efeitos dos fármacos , Córtex Cerebral/fisiologia , Primers do DNA , Agonistas GABAérgicos/farmacologia , Meninges/efeitos dos fármacos , Meninges/fisiologia , Microscopia Confocal , Microscopia de Fluorescência , Neurônios/citologia , Neurônios/efeitos dos fármacos , Técnicas de Patch-Clamp , Proteína Quinase C/genética , Piridinas/farmacologia , RNA Interferente Pequeno/genética , Ratos , Receptores de GABA-A/efeitos dos fármacos , Zolpidem
5.
PLoS One ; 8(8): e72047, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23977202

RESUMO

Salmonella enterica serovar Typhimurium is a flagellated bacterium and one of the leading causes of gastroenteritis in humans. Bacterial flagellin is required for motility and also a prime target of the innate immune system. Innate immune recognition of flagellin is mediated by at least two independent pathways, TLR5 and Naip5-Naip6/NlrC4/Caspase-1. The functional significance of each of the two independent flagellin recognition systems for host defense against wild type Salmonella infection is complex, and innate immune detection of flagellin contributes to both protection and susceptibility. We hypothesized that efficient modulation of flagellin expression in vivo permits Salmonella to evade innate immune detection and limit the functional role of flagellin-specific host innate defenses. To test this hypothesis, we used Salmonella deficient in the anti-sigma factor flgM, which overproduce flagella and are attenuated in vivo. In this study we demonstrate that flagellin recognition by the innate immune system is responsible for the attenuation of flgM(-) S. Typhimurium, and dissect the contribution of each flagellin recognition pathway to bacterial clearance and inflammation. We demonstrate that caspase-1 controls mucosal and systemic infection of flgM(-) S. Typhimurium, and also limits intestinal inflammation and injury. In contrast, TLR5 paradoxically promotes bacterial colonization in the cecum and systemic infection, but attenuates intestinal inflammation. Our results indicate that Salmonella evasion of caspase-1 dependent flagellin recognition is critical for establishing infection and that evasion of TLR5 and caspase-1 dependent flagellin recognition helps Salmonella induce intestinal inflammation and establish a niche in the inflamed gut.


Assuntos
Caspase 1/metabolismo , Flagelina/imunologia , Imunidade Inata , Infecções por Salmonella/imunologia , Salmonella typhimurium/imunologia , Animais , Antibacterianos/farmacologia , Ceco/metabolismo , Ceco/microbiologia , Células Cultivadas , Gastroenterite/imunologia , Gastroenterite/microbiologia , Expressão Gênica/imunologia , Evasão da Resposta Imune , Mucosa Intestinal/enzimologia , Mucosa Intestinal/imunologia , Mucosa Intestinal/microbiologia , Macrófagos Peritoneais/imunologia , Macrófagos Peritoneais/microbiologia , Camundongos Endogâmicos C57BL , Camundongos Knockout , Fenótipo , Infecções por Salmonella/microbiologia , Estreptomicina/farmacologia , Receptor 5 Toll-Like/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA