Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Nanotechnology ; 35(16)2024 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-38154138

RESUMO

Solid-state single-photon emitters (SPEs) commonly encounter the limitation of quasi-omnidirectional radiation patterns, which poses challenges in utilizing their emission with conventional optical instruments. In this study, we demonstrate the tailoring of the far-field radiation patterns of SPEs based on colloidal quantum dots (QDs), both theoretically and experimentally, by employing a polymer-based dielectric antenna. We introduce a simple and cost-effective technique, namely low one-photon absorption direct laser writing, to achieve precise coupling of a QD into an all-polymer circular waveguide resonance grating. By optimizing the geometry parameters of the structure using 3D finite-difference time-domain simulations, resonance at the emission wavelength of QDs is achieved in the direction perpendicular to the substrate, resulting in photon streams with remarkably high directivity on both sides of the grating. Theoretical calculations predict beam divergence values below 2°, while experimental measurements using back focal plane imaging yield divergence angles of approximately 8°. Our study contributes to the evaluation of concentric circular grating structures employing low refractive index polymer materials, thereby expanding the possibilities for their application.

2.
Sensors (Basel) ; 23(17)2023 Aug 24.
Artigo em Inglês | MEDLINE | ID: mdl-37687829

RESUMO

The accurate, rapid, and specific detection of DNA strands in solution is becoming increasingly important, especially in biomedical applications such as the trace detection of COVID-19 or cancer diagnosis. In this work we present the design, elaboration and characterization of an optofluidic sensor based on a polymer-based microresonator which shows a quick response time, a low detection limit and good sensitivity. The device is composed of a micro-racetrack waveguide vertically coupled to a bus waveguide and embedded within a microfluidic circuit. The spectral response of the microresonator, in air or immersed in deionised water, shows quality factors up to 72,900 and contrasts up to 0.9. The concentration of DNA strands in water is related to the spectral shift of the microresonator transmission function, as measured at the inflection points of resonance peaks in order to optimize the signal-over-noise ratio. After functionalization by a DNA probe strand on the surface of the microresonator, a specific and real time measurement of the complementary DNA strands in the solution is realized. Additionally, we have inferred the dissociation constant value of the binding equilibrium of the two complementary DNA strands and evidenced a sensitivity of 16.0 pm/µM and a detection limit of 121 nM.


Assuntos
COVID-19 , Humanos , DNA Complementar , Meios de Contraste , Polímeros , Água
3.
Opt Express ; 29(19): 29841-29856, 2021 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-34614721

RESUMO

We demonstrate a one-step fabrication method to realize desired gold (Au) nanoholes arrays by using a one-photon absorption based direct laser writing technique. Thanks to the optically induced thermal effect of Au material at 532 nm excitation wavelength, the local temperature at the laser focus area can reach as high as 600°C, which induces an evaporation of the Au thin film resulting in a metallic nanohole. By controlling the laser spot movement and exposure time, different two-dimensional Au nanoholes structures with periodicity as small as 500 nm have been demonstrated. This allows obtaining plasmonic nanostructures in a single step without needing the preparation of polymeric template and lift-off process. By this direct fabrication technique, the nanoholes do not have circular shape as the laser focusing spot, due to the non-uniform heat transfer in a no-perfect flat Au film. However, the FDTD simulation results and the experimental measurement of the transmission spectra show that the properties of fabricated plasmonic nanoholes arrays are very close to those of ideal plasmonic nanostructures. Actually, the plasmonic resonance depends strongly on the periodicity of the metallic structures while the heterogeneous form of the holes simply enlarges the resonant peak. Furthermore, it is theoretically demonstrated that the non-perfect circular shape of the Au hole allows amplifying the electromagnetic field of the resonant peak by several times as compared to the case of perfect circular shape. This could be an advantage for application of this fabricated structure in laser and nonlinear optics domains.

4.
Opt Lett ; 42(12): 2382-2385, 2017 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-28614316

RESUMO

We demonstrate a direct way to realize arbitrary gold nanostructures via a local dewetting method. This technique was based on the optically induced local thermal effect at the focusing region of a direct laser writing (DLW) system employing a green continuous-wave laser. The local high temperature allowed the creation of gold nano-islands only at the focusing area of the optical system. By moving the focusing spot, this DLW method allowed us to "write" desired two-dimensional gold patterns with a feature size down to sub-lambda. A heat model was also proposed to theoretically explain the localized heating process of the absorbing gold layer. The preliminary results were demonstrated for data storage and color printer applications.

5.
Micromachines (Basel) ; 15(2)2024 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-38398931

RESUMO

We demonstrate a method for the realization of highly nonlinear optical 4-(4-dimethylaminostyryl)- 1-methylpyridinium tosylate (DAST) two-dimensional structures by a double-step technique. The desired polymeric structures were first fabricated by using the multiple exposure of the two-beam interference technique, and the DAST nanoscrystals were then prepared inside the air-voids of these photoresist templates, resulting in nonlinear periodic structures. The nonlinear properties were characterized by optical and scanning microscopies, as well as by second-harmonic generation technique. This nonlinear modulation is very promising for the enhancement of nonlinear conversion rates, such as terahertz generation, by using the quasi-phase matching technique.

6.
Opt Express ; 21(18): 20964-73, 2013 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-24103969

RESUMO

We demonstrate a new 3D fabrication method to achieve the same results as those obtained by the two-photon excitation technique, by using a simple one-photon elaboration method in a very low absorption regime. Desirable 2D and 3D submicrometric structures, such as spiral, chiral, and woodpile architectures, with feature size as small as 190 nm have been fabricated, by using just a few milliwatts of a continuous-wave laser at 532 nm and a commercial SU8 photoresist. Different aspects of the direct laser writing based on ultralow one-photon absorption (LOPA) technique are investigated and compared with the TPA technique, showing several advantages, such as simplicity and low cost.

7.
Opt Lett ; 38(22): 4640-3, 2013 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-24322094

RESUMO

With respect to experimental condition, we have investigated the point spread function of a high numerical aperture objective lens, taking into account the absorption effect of the studied material. By using a material possessing an ultralow one-photon absorption (LOPA) coefficient at the excitation wavelength, the light beam can penetrate deeply inside the material and be tightly focused into a subwavelength spot, almost the same as in the absence of material. Combining tight focusing and ultralow absorption conditions, we show that LOPA-based microscopy is thus capable of three-dimensional imaging and fabrication with long penetration depth up to 300 µm. As compared to the commonly used two-photon absorption microscope, the LOPA method allows simplification of the experimental setup and also minimization of the photodamaging or bleaching effect of materials.


Assuntos
Aumento da Imagem/instrumentação , Imageamento Tridimensional/instrumentação , Lentes , Microscopia/instrumentação , Fotometria/instrumentação , Fótons , Desenho Assistido por Computador , Desenho de Equipamento , Análise de Falha de Equipamento , Imageamento Tridimensional/métodos
8.
Polymers (Basel) ; 15(9)2023 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-37177347

RESUMO

In the field of quantum technology, there has been a growing interest in fully integrated systems that employ single photons due to their potential for high performance and scalability. Here, a simple method is demonstrated for creating on-chip 3D printed polymer waveguide-coupled single-photon emitters based on colloidal quantum dots (QDs). By using a simple low-one photon absorption technique, we were able to create a 3D polymeric crossed-arc waveguide structure with a bright QD on top. These waveguides can conduct both excitation laser and emitted single photons, which facilitates the characterization of single-photon signals at different outputs with a conventional confocal scanning system. To optimize the guiding effect of the polymeric waveguide structures, comprehensive 3D finite-difference time-domain simulations were performed. Our method provides a straightforward and cost-effective way to integrate high-performance single-photon sources with on-chip photonic devices, enabling scalable and versatile quantum photonic circuits for various applications.

9.
Micromachines (Basel) ; 14(5)2023 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-37241692

RESUMO

Polymer-based micro-optical components are very important for applications in optical communication. In this study, we theoretically investigated the coupling of polymeric waveguide and microring structures and experimentally demonstrated an efficient fabrication method to realize these structures on demand. First, the structures were designed and simulated using the FDTD method. The optical mode and loss in the coupling structures were calculated, thereby giving the optimal distance for optical mode coupling between two rib waveguide structures or for optical mode coupling in a microring resonance structure. Simulations results then guided us in the fabrication of the desired ring resonance microstructures using a robust and flexible direct laser writing technique. The entire optical system was thus designed and manufactured on a flat base plate so that it could be easily integrated in optical circuits.

10.
Polymers (Basel) ; 15(1)2022 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-36616365

RESUMO

We report an original method for directly fabricating gold nanoparticles (Au NPs) in a polymer matrix using a thermal treatment technique and theoretically and experimentally investigate their plasmonic properties. The polymeric-metallic nanocomposite samples were first prepared by simply mixing SU-8 resist and Au salt with different concentrations. The Au NPs growth was triggered inside the polymer through a thermal process on a hot plate and in air environment. The Au NPs creation was confirmed by the color of the nanocomposite thin films and by absorption spectra measurements. The Au NPs sizes and distributions were confirmed by transmission electron microscope measurements. It was found that the concentrations of Au salt and the annealing temperatures and durations are all crucial for tuning the Au NPs sizes and distributions, and, thus, their optical properties. We also propose a simulation model for calculations of Au NPs plasmonic properties inside a polymer medium. We realized that Au NPs having large sizes (50 to 100 nm) play an important role in absorption spectra measurements, as compared to the contribution of small NPs (<20 nm), even if the relative amount of big Au NPs is small. This simple, low-cost, and highly reproducible technique allows us to obtain plasmonic NPs within polymer thin films on a large scale, which can be potentially applied to many fields.

11.
Sci Rep ; 12(1): 13581, 2022 08 09.
Artigo em Inglês | MEDLINE | ID: mdl-35945425

RESUMO

α-Thalassemia is a common inherited blood disorder manifested mainly by the deletions of α-globin genes. In geographical areas with high carrier frequencies, screening of α-thalassemia carrier state is therefore of vital importance. This study presents a novel method for identifying female carriers of common α-thalassemia deletions using samples routinely taken for non-invasive prenatal tests for screening of fetal chromosomal aneuploidies. A total of 68,885 Vietnamese pregnant women were recruited and α-thalassemia statuses were determined by gap-PCR, revealing 5344 women (7.76%) carried deletions including αα/--SEA (4.066%), αα/-α3.7 (2.934%), αα/-α4.2 (0.656%), and rare genotypes (0.102%). A two-stage model was built to predict these α-thalassemia deletions from targeted sequencing of the HBA gene cluster on maternal cfDNA. Our method achieved F1-scores of 97.14-99.55% for detecting the three common genotypes and 94.74% for detecting rare genotypes (-α3.7/-α4.2, αα/--THAI, -α3.7/--SEA, -α4.2/--SEA). Additionally, the positive predictive values were 100.00% for αα/αα, 99.29% for αα/--SEA, 94.87% for αα/-α3.7, and 96.51% for αα/-α4.2; and the negative predictive values were 97.63%, 99.99%, 99.99%, and 100.00%, respectively. As NIPT is increasingly adopted for pregnant women, utilizing cfDNA from NIPT to detect maternal carriers of common α-thalassemia deletions will be cost-effective and expand the benefits of NIPT.


Assuntos
Ácidos Nucleicos Livres , Talassemia alfa , Talassemia beta , China , Feminino , Genótipo , Humanos , Mutação , Reação em Cadeia da Polimerase/métodos , Gravidez , alfa-Globinas/genética , Talassemia alfa/diagnóstico , Talassemia alfa/genética , Talassemia beta/genética
12.
Appl Opt ; 50(4): 579-85, 2011 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-21283250

RESUMO

We demonstrate a promising method for fabrication of plastic microlens arrays (MLAs) with a controllable ellipticity and structure, by using the combination of multiple-exposure two-beam interference and plastic replication techniques. Multiple exposures of a two-beam interference pattern with a wavelength of 442 nm into a thick positive photoresist (AZ-4620) were used to form different two-dimensional periodic structures. Thanks to the developing effect of the positive photoresist, fabricated structures consisting of hemielliptical- or hemispherical-shaped concave holes were obtained. By controlling the rotation angle between different exposures, both the shape and structure of the holes varied. By adjusting the dosage ratio between different exposures, the shape of the holes was modified while the structure of the holes was unchanged. The photoresist concave microstructures were then transferred to plastic MLAs by employing replication and embossing techniques. The fabricated MLAs were characterized by a scanning electron microscope and atomic force microscope measurements. We show that the ellipticity of the microlenses can be well controlled from 0 (hemispherical) to 0.96 (hemielliptical) by changing the rotation angle or dosage ratio between the two exposures.

13.
Appl Opt ; 50(23): 4664-70, 2011 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-21833145

RESUMO

We demonstrate the fabrication of a three-dimensional (3D) polymer quadratic nonlinear (χ(2)) grating structure. By performing layer-by-layer direct laser writing (DLW) and spin-coating approaches, desired photobleached grating patterns were embedded in the guest-host dispersed-red-1/poly(methylmethacrylate) (DR1/PMMA) active layers of an active-passive alternative multilayer structure through photobleaching of DR1 molecules. Polyvinyl-alcohol and SU8 thin films were deposited between DR1/PMMA layers serving as a passive layer to separate DR1/PMMA active layers. After applying the corona electric field poling to the multilayer structure, nonbleached DR1 molecules in the active layers formed polar distribution, and a 3D χ(2) grating structure was obtained. The χ(2) grating structures at different DR1/PMMA nonlinear layers were mapped by laser scanning second harmonic (SH) microscopy, and no cross talk was observed between SH images obtained from neighboring nonlinear layers. The layer-by-layer DLW technique is favorable to fabricating hierarchical 3D polymer nonlinear structures for optoelectronic applications with flexible structural design.

14.
Biomed Opt Express ; 12(1): 1-19, 2021 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-33659069

RESUMO

We introduce a compact array fluorescence sensor principle that takes advantage of the long luminescence lifetimes of upconversion nanoparticles (UCNPs) to deploy a filter-free, optics-less contact geometry, advantageous for modern biochemical assays of biomolecules, pollutants or cells. Based on technologically mature CMOS chips for ∼10 kHz technical/scientific imaging, we propose a contact geometry between assayed molecules or cells and a CMOS chip that makes use of only a faceplate or direct contact, employing time-window management to reject the 975 nm excitation light of highly efficient UCNPs. The chip surface is intended to implement, in future devices, a resonant waveguide grating (RWG) to enhance excitation efficiency, aiming at the improvement of upconversion luminescence emission intensity of UCNP deposited atop of such an RWG structure. Based on mock-up experiments that assess the actual chip rejection performance, we bracket the photometric figures of merit of such a promising chip principle and predict a limit of detection around 10-100 nanoparticles.

15.
Sci Rep ; 10(1): 4843, 2020 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-32179841

RESUMO

Quantum dot (QD) coupling in nanophotonics has been widely studied for various potential applications in quantum technologies. Micro-machining has also attracted substantial research interest due to its capacity to use miniature robotic tools to make precise controlled movements. In this work, we combine fluorescent QDs and magnetic nanoparticles (NPs) to realize multifunctional microrobotic structures and demonstrate the manipulation of a coupled single-photon source (SPS) in 3D space via an external magnetic field. By employing the low one photon absorption (LOPA) direct laser writing (DLW) technique, the fabrication of 2D and 3D magneto-photonic devices containing a single QD is performed on a hybrid material consisting of colloidal CdSe/CdS QDs, magnetite Fe3O4 NPs, and SU-8 photoresist. Two types of devices, contact-free and in-contact structures, are investigated to demonstrate their magnetic and photoradiative responses. The coupled SPS in the devices is driven by the external magnetic field to perform different movements in a 3D fluidic environment. The optical properties of the single QD in the devices are characterized.

16.
Opt Express ; 17(5): 3362-9, 2009 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-19259173

RESUMO

This work demonstrates a promising method to fabricate periodic nanovein structures, which can be served as templates for fabricating photonic crystals possessing a large complete photonic bandgap. First, the fabrication of a one-dimensional grating structure connected with nanolines is demonstrated by controlling the exposure dosage of the second exposure of the two-exposure two-beam interference technique. Secondly, by using the same interference technique but setting each exposure under the same exposure dosage, two-dimensional periodic structures with nanovein connections were fabricated. These structures were obtained by using either a pure negative photoresist with very low concentration of photoinitiator or a mixing of a negative and a positive photoresists. The fabricated structures are not, as usual, a duplication of the interference pattern but are constituted by square or triangular rods connecting with narrow veins. They can be used as templates for fabricating photonic crystals with very large complete photonic bandgap.

17.
Appl Opt ; 48(13): 2473-9, 2009 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-19412205

RESUMO

Microlens arrays (MLAs) were fabricated based on the mass transport effect of SU-8 photoresist by a multiexposure two-beam interference technique. In particular, a direct single-step fabrication process, i.e., without developing, mask, and pattern transferring processes, is demonstrated. The effects of various parameters such as thicknesses, exposure dosage, and angle between two laser beams on MLAs were investigated. Square and hexagonal lattices of microlenses were obtained by controlling rotation angles between different exposures on SU-8 samples. In addition, microlenses with elliptical shape were fabricated by a double exposure at 0 degrees and 60 degrees. Finally, the surface profiles of microlenses in MLAs were characterized by atomic force microscopy.


Assuntos
Compostos de Epóxi/química , Interferometria/instrumentação , Lentes , Polímeros/química , Desenho de Equipamento , Análise de Falha de Equipamento , Luz , Miniaturização , Refratometria/instrumentação , Espalhamento de Radiação
18.
Nanoscale Adv ; 1(8): 3225-3231, 2019 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-36133591

RESUMO

Colloidal semiconductor quantum dots (QDs) are promising candidates for various applications in electronics and quantum optics. However, they are sensitive and vulnerable to the chemical environment due to their highly dynamic surface with a large portion of exposed atoms. Hence, oxidation and detrimental defects on the nanocrystal (NC) interface dramatically deteriorate their optical as well as electrical properties. In this study, a simple strategy is proposed not only to obtain good preservation of colloidal semiconductor QDs by using a protective polymer matrix but also to provide excellent accessibility to micro-fabrication by optical lithography. A high-quality QD-polymer nanocomposite with mono-dispersion of the NCs is synthesized by incorporating the colloidal CdSe/CdS NCs into an SU-8 photoresist. Our approach shows that the oxidation of the core/shell QDs embedded in the SU-8 resist is completely avoidable. The deterministic insertion of multiple QDs or a single QD into photonic structures is demonstrated. Single photon generation is obtained and well-preserved in the nanocomposite and the polymeric structures.

19.
Opt Express ; 16(11): 7832-41, 2008 May 26.
Artigo em Inglês | MEDLINE | ID: mdl-18545493

RESUMO

This work demonstrates that arbitrary types of spatially modulated second-order susceptibility (chi((2)) structures such as 1D and 2D, periodic and quasi-periodic structures can be obtained by using the combination of corona poling and direct laser writing (DLW) techniques. The fabrication technique is based on the photodepoling of azo-dye molecules caused by one-photon or two-photon absorption during the DLW process. Polarization and second harmonic generation (SHG) images of the fabricated structures were measured by electrostatic force microscope and SHG mapping techniques, respectively. Furthermore, quasi-phase-matched (QPM) enhanced SHG from a 1D periodically poled azo-copolymer planar waveguide is demonstrated using an optical parametric oscillator laser by scanning wavelength from 1500 to 1600 nm. The resonant wavelength of the QPM enhanced SHG is peaked at 1537 nm with FWHM is congruent to 2.5 nm.


Assuntos
Compostos Azo/química , Desenho Assistido por Computador , Modelos Teóricos , Óptica e Fotônica/instrumentação , Oscilometria/instrumentação , Polímeros/química , Simulação por Computador , Desenho de Equipamento , Análise de Falha de Equipamento , Dinâmica não Linear
20.
Polymers (Basel) ; 10(6)2018 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-30966667

RESUMO

In this paper, silver (Ag) nanoclusters-loaded graphitic carbon nitride (g-C3N4) nanosheets are synthesized and their physical properties as well as photocatalytic activities are systematically investigated by different techniques. The existence of Ag atoms in the form of nanoclusters (NCs) rather than well-crystallized nanoparticles are evidenced by X-ray diffraction patterns, SEM images, and XPS spectra. The deposition of Ag nanoclusters on the surface of g-C3N4 nanosheets affect the crystal structure and slightly reduce the band gap energy of g-C3N4. The sharp decrease of photoluminescence intensity indicates that g-C3N4/Ag heterojunctions successfully prevent the recombination of photo-generated electrons and holes. The photocatalytic activities of as-synthesized photocatalysts are demonstrated through the degradation of rhodamine B (RhB) solutions under Xenon lamp irradiation. It is demonstrated that the photocatalytic activity depends strongly on the molar concentration of Ag⁺ in the starting solution. The g-C3N4/Ag heterojunctions prepared from 0.01 M of Ag⁺ starting solution exhibit the highest photocatalytic efficiency and allow 100% degradation of RhB after being exposed for 60 min under a Xenon lamp irradiation, which is four times faster than that of pure g-C3N4 nanosheets.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA