RESUMO
We present the potential of ultrathin bilayer metallic nanofilms for use as broadband antireflection coatings in the terahertz frequency range. The metallic layers are modeled using a wave-impedance matching approach. The experimental and theoretical results are in good agreement. Further, a novel method using our broadband antireflection coatings is proposed to eliminate unwanted reflections that interfere with the important reflection from the sample in terahertz reflection measurement. The proposed method significantly improves the calculation of the optical properties of liquid and biological samples.
Assuntos
Lentes , Membranas Artificiais , Nanopartículas Metálicas/química , Nanopartículas Metálicas/ultraestrutura , Dispositivos Ópticos , Radiação Terahertz , Absorção Fisico-Química , Espalhamento de RadiaçãoRESUMO
In reflection geometry of terahertz spectroscopy, the biological sample is usually placed on a sample window. This paper presents a novel method for eliminating the effect of the ringing, i.e., the interference between reflections of the reference and the sample, and from the air-window and sample-window interfaces, respectively. In the proposed method, a special thickness of substrate is designed to acquire an accurate reference reflection. The reflections of the samples of deionized water and ethanol were examined, and the calculation of optical properties of the samples by using our proposed method agrees with standard data. The main advantages of this method are simplicity, accuracy, and ease of application for reflection systems with different incident angles.