Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
BMC Biol ; 21(1): 239, 2023 10 31.
Artigo em Inglês | MEDLINE | ID: mdl-37904140

RESUMO

BACKGROUND: The Sino-Himalayan flora harbors highly diverse high-elevation biotas, but our understanding of its evolutionary history in temporal and spatial dimensions is limited. In this study, we integrated a dated phylogenetic tree with comprehensive species distribution data to investigate changes over time and space in floristic elements, including the tropical, Tethys, northern temperate, and East Asian floristic elements, across the entire Sino-Himalaya and its three floristic regions: the Yunnan Plateau, Hengduan Mountains, and East Himalaya regions. RESULTS: Our results revealed that the Sino-Himalayan flora developed from lowland biomes and was predominantly characterized by tropical floristic elements before the collision between the Indian subcontinent and Eurasia during the Early Cenozoic. Subsequently, from the Late Eocene onwards, the uplifts of the Himalaya and Hengduan Mountains transformed the Sino-Himalayan region into a wet and cold plateau, on which harsh and diverse ecological conditions forced the rapid evolution of local angiosperms, giving birth to characteristic taxa adapted to the high altitudes and cold habitat. The percentage of temperate floristic elements increased and exceeded that of tropical floristic elements by the Late Miocene. CONCLUSIONS: The Sino-Himalayan flora underwent four significant formation periods and experienced a considerable increase in endemic genera and species in the Miocene, which remain crucial to the present-day patterns of plant diversity. Our findings support the view that the Sino-Himalayan flora is relatively young but has ancient origins. The three major shifts in the divergence of genera and species during the four formation periods were primarily influenced by the uplifts of the Himalaya and Hengduan Mountains and the onset and intensification of the Asian monsoon system. Additionally, the temporal patterns of floristic elements differed among the three floristic regions of the Sino-Himalaya, indicating that the uplift of the Himalaya and surrounding areas was asynchronous. Compared to the Yunnan Plateau region, the East Himalaya and Hengduan Mountains experienced more recent and drastic uplifts, resulting in highly intricate topography with diverse habitats that promoted the rapid radiation of endemic genera and species in these regions.


Assuntos
Biodiversidade , Ecossistema , Gravidez , Humanos , Feminino , Filogenia , China , Plantas
2.
Mol Phylogenet Evol ; 157: 107062, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33387648

RESUMO

We explore the origins of the extraordinary plant diversity in the Qinghai-Tibetan Plateau (QTP) using Orchidinae (Orchidaceae) as a model. Our results indicate that six major clades in Orchidinae exhibited substantial variation in the temporal and spatial sequence of diversification. Our time-calibrated phylogenetic model suggests that the species-richness of Orchidinae arose through a combination of in situ diversification, colonisation, and local recruitment. There are multiple origins of species-richness of Orchidinae in the QTP, and pre-adaptations in clades from North Temperate and alpine regions were crucial for in situ diversification. The geographic analysis identified 29 dispersals from Asia, Africa and Europe into the QTP and 15 dispersals out. Most endemic species of Orchidinae evolved within the past six million years.


Assuntos
Adaptação Fisiológica , Ecossistema , Orchidaceae/classificação , Filogenia , Aclimatação , África , Ásia , Biodiversidade , Europa (Continente) , Tibet , Fatores de Tempo
3.
Curr Biol ; 34(6): 1271-1283.e4, 2024 03 25.
Artigo em Inglês | MEDLINE | ID: mdl-38460512

RESUMO

Madagascar is a biogeographically unique island with a remarkably high level of endemism. However, endemic taxa in Madagascar are massively threatened due to unprecedented pressures from anthropogenic habitat modification and climate change. A comprehensive phylogeny-based biodiversity evaluation of the island remains lacking. Here, we identify hotspots of taxonomic and phylogenetic plant diversity and neo- and paleo-endemism by generating a novel dated tree of life for the island. The tree is based on unprecedented sampling of 3,950 species (33% of the total known species) and 1,621 genera (93% of the total known genera and 69% of endemic genera) of Malagasy vascular plants. We find that island-endemic genera are concentrated in multiple lineages combining high taxonomic and phylogenetic diversity. Integrating phylogenetic and geographic distribution data, our results reveal that taxon richness and endemism are concentrated in the northern, eastern, and southeastern humid forests. Paleo-endemism centers are concentrated in humid eastern and central regions, whereas neo-endemism centers are concentrated in the dry and spiny forests in western and southern Madagascar. Our statistical analysis of endemic genera in each vegetation region supports a higher proportion of ancient endemic genera in the east but a higher proportion of recent endemic genera in the south and west. Overlaying centers of phylogenetic endemism with protected areas, we identify conservation gaps concentrated in western and southern Madagascar. These gaps should be incorporated into conservation strategies to aid the protection of multiple facets of biodiversity and their benefits to the Malagasy people.


Assuntos
Biodiversidade , Ecossistema , Plantas , Madagáscar , Filogenia
4.
Mol Phylogenet Evol ; 69(3): 950-60, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-23811435

RESUMO

Dendrobium is one of the three largest genera and presents some of the most intricate taxonomic problems in the family Orchidaceae. Based on five DNA markers and a broad sampling of Dendrobium and its relatives from mainland Asia (109 species), our results indicate that mainland Asia Dendrobium is divided into eight clades (with two unplaced species) that form polytomies along the spine of the cladogram. Both Dendrobium and Epigeneium are well supported as monophyletic, whereas sect. Dendrobium, sect. Densiflora, sect. Breviflores, sect. Holochrysa, are paraphyletic/polyphyletic. Many ignored phylogenetic relationships, such as the one of major clades formed by D. jenkinsii and D. lindleyi (two members of sect. Densiflora), the Aphyllum group, the Devonianum group, the Catenatum group, the Crepidatum group, and the Dendrobium moniliforme complex are well supported by both molecular and morphological evidence. Based on our data, we propose to broaden sect. Dendrobium to include sect. Stuposa, sect. Breviflores, and sect. Holochrysa and to establish a new section to accommodate D. jenkinsii and D. lindleyi. Our results indicated that it is preferable to use a broad generic concept of Dendrobium and to pursue an improved infrageneric classification at sectional level, taking into account both morphology and current molecular findings.


Assuntos
Dendrobium/classificação , Filogenia , Ásia , Teorema de Bayes , Núcleo Celular/genética , DNA de Cloroplastos/genética , DNA de Plantas/genética , Dendrobium/anatomia & histologia , Dendrobium/genética , Marcadores Genéticos , Modelos Genéticos , Alinhamento de Sequência , Análise de Sequência de DNA
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA