Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 132
Filtrar
1.
Nat Chem Biol ; 19(7): 878-886, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37142806

RESUMO

A diverse array of bacteria species naturally self-organize into durable macroscale patterns on solid surfaces via swarming motility-a highly coordinated and rapid movement of bacteria powered by flagella. Engineering swarming is an untapped opportunity to increase the scale and robustness of coordinated synthetic microbial systems. Here we engineer Proteus mirabilis, which natively forms centimeter-scale bullseye swarm patterns, to 'write' external inputs into visible spatial records. Specifically, we engineer tunable expression of swarming-related genes that modify pattern features, and we develop quantitative approaches to decoding. Next, we develop a dual-input system that modulates two swarming-related genes simultaneously, and we separately show that growing colonies can record dynamic environmental changes. We decode the resulting multicondition patterns with deep classification and segmentation models. Finally, we engineer a strain that records the presence of aqueous copper. This work creates an approach for building macroscale bacterial recorders, expanding the framework for engineering emergent microbial behaviors.


Assuntos
Bactérias , Flagelos
2.
Thorax ; 78(6): 566-573, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36690926

RESUMO

BACKGROUND: The MUC5B promoter variant (rs35705950) and telomere length are linked to pulmonary fibrosis and CT-based qualitative assessments of interstitial abnormalities, but their associations with longitudinal quantitative changes of the lung interstitium among community-dwelling adults are unknown. METHODS: We used data from participants in the Multi-Ethnic Study of Atherosclerosis with high-attenuation areas (HAAs, Examinations 1-6 (2000-2018)) and MUC5B genotype (n=4552) and telomere length (n=4488) assessments. HAA was defined as the per cent of imaged lung with attenuation of -600 to -250 Hounsfield units. We used linear mixed-effects models to examine associations of MUC5B risk allele (T) and telomere length with longitudinal changes in HAAs. Joint models were used to examine associations of longitudinal changes in HAAs with death and interstitial lung disease (ILD). RESULTS: The MUC5B risk allele (T) was associated with an absolute change in HAAs of 2.60% (95% CI 0.36% to 4.86%) per 10 years overall. This association was stronger among those with a telomere length below an age-adjusted percentile of 5% (p value for interaction=0.008). A 1% increase in HAAs per year was associated with 7% increase in mortality risk (rate ratio (RR)=1.07, 95% CI 1.02 to 1.12) for overall death and 34% increase in ILD (RR=1.34, 95% CI 1.20 to 1.50). Longer baseline telomere length was cross-sectionally associated with less HAAs from baseline scans, but not with longitudinal changes in HAAs. CONCLUSIONS: Longitudinal increases in HAAs were associated with the MUC5B risk allele and a higher risk of death and ILD.


Assuntos
Doenças Pulmonares Intersticiais , Pulmão , Adulto , Humanos , Pulmão/diagnóstico por imagem , Doenças Pulmonares Intersticiais/diagnóstico por imagem , Doenças Pulmonares Intersticiais/genética , Doenças Pulmonares Intersticiais/complicações , Genótipo , Telômero/genética , Mucina-5B/genética
3.
Thorax ; 78(11): 1067-1079, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37268414

RESUMO

BACKGROUND: Treatment and preventative advances for chronic obstructive pulmonary disease (COPD) have been slow due, in part, to limited subphenotypes. We tested if unsupervised machine learning on CT images would discover CT emphysema subtypes with distinct characteristics, prognoses and genetic associations. METHODS: New CT emphysema subtypes were identified by unsupervised machine learning on only the texture and location of emphysematous regions on CT scans from 2853 participants in the Subpopulations and Intermediate Outcome Measures in COPD Study (SPIROMICS), a COPD case-control study, followed by data reduction. Subtypes were compared with symptoms and physiology among 2949 participants in the population-based Multi-Ethnic Study of Atherosclerosis (MESA) Lung Study and with prognosis among 6658 MESA participants. Associations with genome-wide single-nucleotide-polymorphisms were examined. RESULTS: The algorithm discovered six reproducible (interlearner intraclass correlation coefficient, 0.91-1.00) CT emphysema subtypes. The most common subtype in SPIROMICS, the combined bronchitis-apical subtype, was associated with chronic bronchitis, accelerated lung function decline, hospitalisations, deaths, incident airflow limitation and a gene variant near DRD1, which is implicated in mucin hypersecretion (p=1.1 ×10-8). The second, the diffuse subtype was associated with lower weight, respiratory hospitalisations and deaths, and incident airflow limitation. The third was associated with age only. The fourth and fifth visually resembled combined pulmonary fibrosis emphysema and had distinct symptoms, physiology, prognosis and genetic associations. The sixth visually resembled vanishing lung syndrome. CONCLUSION: Large-scale unsupervised machine learning on CT scans defined six reproducible, familiar CT emphysema subtypes that suggest paths to specific diagnosis and personalised therapies in COPD and pre-COPD.


Assuntos
Enfisema , Doença Pulmonar Obstrutiva Crônica , Enfisema Pulmonar , Humanos , Enfisema Pulmonar/diagnóstico por imagem , Enfisema Pulmonar/genética , Estudos de Casos e Controles , Aprendizado de Máquina não Supervisionado , Pulmão , Tomografia Computadorizada por Raios X
4.
Magn Reson Med ; 87(4): 1700-1710, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-34931715

RESUMO

PURPOSE: To introduce a novel convolutional neural network (CNN)-based approach for frequency-and-phase correction (FPC) of MR spectroscopy (MRS) spectra to achieve fast and accurate FPC of single-voxel MEGA-PRESS MRS data. METHODS: Two neural networks (one for frequency and one for phase) were trained and validated using published simulated and in vivo MEGA-PRESS MRS dataset with wide-range artificial frequency and phase offsets applied. The CNN-based approach was subsequently tested and compared to the current deep learning solution: multilayer perceptrons (MLP). Furthermore, random noise was added to the original simulated dataset to further investigate the model performance at varied signal-to-noise ratio (SNR) levels (i.e., 10, 5, and 2.5). Additional frequency and phase offsets (i.e., small, moderate, large) were also applied to the in vivo dataset, and the CNN model was compared to the conventional approach SR and model-based SR implementation (mSR). RESULTS: The CNN model is more robust to noise compared to the MLP-based approach due to having smaller mean absolute errors in both frequency (0.01 ± 0.01 Hz at SNR = 10 and 0.01 ± 0.02 Hz at SNR = 2.5) and phase (0.12 ± 0.09° at SNR = 10 and -0.07 ± 0.44° at SNR = 2.5) offset prediction. Furthermore, better performance was demonstrated for FPC when compared to the MLP-based approach, and SR when applied to the in vivo dataset for both with and without additional offsets. CONCLUSION: A CNN-based approach provides a solution to the automated preprocessing of MRS data, and the experimental results demonstrate the quantitatively improved spectra quality compared to the state-of-the-art approach.


Assuntos
Processamento de Imagem Assistida por Computador , Redes Neurais de Computação , Processamento de Imagem Assistida por Computador/métodos , Espectroscopia de Ressonância Magnética , Razão Sinal-Ruído
5.
JAMA ; 322(6): 546-556, 2019 08 13.
Artigo em Inglês | MEDLINE | ID: mdl-31408135

RESUMO

Importance: While air pollutants at historical levels have been associated with cardiovascular and respiratory diseases, it is not known whether exposure to contemporary air pollutant concentrations is associated with progression of emphysema. Objective: To assess the longitudinal association of ambient ozone (O3), fine particulate matter (PM2.5), oxides of nitrogen (NOx), and black carbon exposure with change in percent emphysema assessed via computed tomographic (CT) imaging and lung function. Design, Setting, and Participants: This cohort study included participants from the Multi-Ethnic Study of Atherosclerosis (MESA) Air and Lung Studies conducted in 6 metropolitan regions of the United States, which included 6814 adults aged 45 to 84 years recruited between July 2000 and August 2002, and an additional 257 participants recruited from February 2005 to May 2007, with follow-up through November 2018. Exposures: Residence-specific air pollutant concentrations (O3, PM2.5, NOx, and black carbon) were estimated by validated spatiotemporal models incorporating cohort-specific monitoring, determined from 1999 through the end of follow-up. Main Outcomes and Measures: Percent emphysema, defined as the percent of lung pixels less than -950 Hounsfield units, was assessed up to 5 times per participant via cardiac CT scan (2000-2007) and equivalent regions on lung CT scans (2010-2018). Spirometry was performed up to 3 times per participant (2004-2018). Results: Among 7071 study participants (mean [range] age at recruitment, 60 [45-84] years; 3330 [47.1%] were men), 5780 were assigned outdoor residential air pollution concentrations in the year of their baseline examination and during the follow-up period and had at least 1 follow-up CT scan, and 2772 had at least 1 follow-up spirometric assessment, over a median of 10 years. Median percent emphysema was 3% at baseline and increased a mean of 0.58 percentage points per 10 years. Mean ambient concentrations of PM2.5 and NOx, but not O3, decreased substantially during follow-up. Ambient concentrations of O3, PM2.5, NOx, and black carbon at study baseline were significantly associated with greater increases in percent emphysema per 10 years (O3: 0.13 per 3 parts per billion [95% CI, 0.03-0.24]; PM2.5: 0.11 per 2 µg/m3 [95% CI, 0.03-0.19]; NOx: 0.06 per 10 parts per billion [95% CI, 0.01-0.12]; black carbon: 0.10 per 0.2 µg/m3 [95% CI, 0.01-0.18]). Ambient O3 and NOx concentrations, but not PM2.5 concentrations, during follow-up were also significantly associated with greater increases in percent emphysema. Ambient O3 concentrations, but not other pollutants, at baseline and during follow-up were significantly associated with a greater decline in forced expiratory volume in 1 second per 10 years (baseline: 13.41 mL per 3 parts per billion [95% CI, 0.7-26.1]; follow-up: 18.15 mL per 3 parts per billion [95% CI, 1.59-34.71]). Conclusions and Relevance: In this cohort study conducted between 2000 and 2018 in 6 US metropolitan regions, long-term exposure to ambient air pollutants was significantly associated with increasing emphysema assessed quantitatively using CT imaging and lung function.


Assuntos
Poluentes Atmosféricos/efeitos adversos , Poluição do Ar/efeitos adversos , Pulmão/fisiologia , Enfisema Pulmonar , Idoso , Idoso de 80 Anos ou mais , Poluentes Atmosféricos/análise , Poluição do Ar/análise , Carbono/efeitos adversos , Carbono/análise , Estudos de Coortes , Progressão da Doença , Exposição Ambiental/efeitos adversos , Feminino , Humanos , Pulmão/diagnóstico por imagem , Masculino , Pessoa de Meia-Idade , Óxidos de Nitrogênio/efeitos adversos , Óxidos de Nitrogênio/análise , Ozônio/efeitos adversos , Ozônio/análise , Material Particulado/efeitos adversos , Material Particulado/análise , Enfisema Pulmonar/epidemiologia , Enfisema Pulmonar/fisiopatologia , Testes de Função Respiratória , Tomografia Computadorizada por Raios X , Estados Unidos/epidemiologia
7.
NMR Biomed ; 31(1)2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-29105210

RESUMO

The goals of this study were to develop an acquisition protocol and the analysis tools for Meshcher-Garwood point-resolved spectroscopy (MEGA-PRESS) in mouse brain at 9.4 T, to allow the in vivo detection of γ-aminobutyric acid (GABA) and to examine whether isoflurane alters GABA levels in the thalamus during anesthesia. We implemented the MEGA-PRESS sequence on a Bruker 94/20 system with ParaVision 6.0.1, and magnetic resonance spectra were acquired from nine male wild-type C57BL/6 J mice at the thalamus. Four individual scans were obtained for each mouse in a 2-h time course whilst the mouse was anesthetized with isoflurane. We developed an automated analysis program with improved correction for frequency and phase drift compared with the standard creatine (Cr) fitting-based method and provided automatic quantification. During MEGA-PRESS acquisition, a single voxel with a size of 5 × 3 × 3 mm3 was placed at the thalamus to evaluate GABA to Cr (GABA/Cr) ratios during anesthesia. Detection and quantitative analysis of thalamic GABA levels were successfully achieved. We noticed a significant decrease in GABA/Cr during the 2-h anesthesia (by linear regression analysis: slope < 0, p < 0.0001). In summary, our findings demonstrate that MEGA-PRESS is a feasible technique to measure in vivo GABA levels in the mouse brain at 9.4 T.


Assuntos
Encéfalo/metabolismo , Imageamento por Ressonância Magnética/métodos , Ácido gama-Aminobutírico/metabolismo , Animais , Automação , Simulação por Computador , Creatina/metabolismo , Masculino , Camundongos Endogâmicos C57BL , Imagens de Fantasmas , Razão Sinal-Ruído , Análise Espectral , Fatores de Tempo
8.
Proc Natl Acad Sci U S A ; 111(14): 5230-5, 2014 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-24706845

RESUMO

How do infants extract milk during breast-feeding? We have resolved a century-long scientific controversy, whether it is sucking of the milk by subatmospheric pressure or mouthing of the nipple-areola complex to induce a peristaltic-like extraction mechanism. Breast-feeding is a dynamic process, which requires coupling between periodic motions of the infant's jaws, undulation of the tongue, and the breast milk ejection reflex. The physical mechanisms executed by the infant have been intriguing topics. We used an objective and dynamic analysis of ultrasound (US) movie clips acquired during breast-feeding to explore the tongue dynamic characteristics. Then, we developed a new 3D biophysical model of the breast and lactiferous tubes that enables the mimicking of dynamic characteristics observed in US imaging during breast-feeding, and thereby, exploration of the biomechanical aspects of breast-feeding. We have shown, for the first time to our knowledge, that latch-on to draw the nipple-areola complex into the infant mouth, as well as milk extraction during breast-feeding, require development of time-varying subatmospheric pressures within the infant's oral cavity. Analysis of the US movies clearly demonstrated that tongue motility during breast-feeding was fairly periodic. The anterior tongue, which is wedged between the nipple-areola complex and the lower lips, moves as a rigid body with the cycling motion of the mandible, while the posterior section of the tongue undulates in a pattern similar to a propagating peristaltic wave, which is essential for swallowing.


Assuntos
Aleitamento Materno , Leite Humano , Fenômenos Biomecânicos , Humanos , Lactente , Recém-Nascido , Mandíbula/fisiologia , Modelos Teóricos , Mamilos/fisiologia , Língua/fisiologia
9.
J Acoust Soc Am ; 137(5): 2773-84, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25994705

RESUMO

Ultrasound imaging is a wide spread technique used in medical imaging as well as in non-destructive testing. The technique offers many advantages such as real-time imaging, good resolution, prompt acquisition, ease of use, and low cost compared to other techniques such as x-ray imaging. However, the maximum frame rate achievable is limited as several beams must be emitted to compute a single image. For each emitted beam, one must wait for the wave to propagate back and forth, thus imposing a limit to the frame rate. Several attempts have been made to use less beams while maintaining image quality. Although efficiently increasing the frame rate, these techniques still use several transmit beams. Compressive Sensing (CS), a universal data completion scheme based on convex optimization, has been successfully applied to a number of imaging modalities over the past few years. Using a priori knowledge of the signal, it can compute an image using less data allowing for shorter acquisition times. In this paper, it is shown that a valid CS framework can be derived from ultrasound propagation theory, and that this framework can be used to compute images of scatterers using only one plane wave as a transmit beam.


Assuntos
Algoritmos , Interpretação de Imagem Assistida por Computador/métodos , Modelos Teóricos , Som , Ultrassom/métodos , Ultrassonografia/métodos , Simulação por Computador , Desenho de Equipamento , Modelos Lineares , Movimento (Física) , Imagens de Fantasmas , Pressão , Espalhamento de Radiação , Fatores de Tempo , Transdutores de Pressão , Ultrassom/instrumentação , Ultrassonografia/instrumentação
10.
IEEE Open J Eng Med Biol ; 5: 191-197, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38606397

RESUMO

Goal: To predict physician fixations specifically on ophthalmology optical coherence tomography (OCT) reports from eye tracking data using CNN based saliency prediction methods in order to aid in the education of ophthalmologists and ophthalmologists-in-training. Methods: Fifteen ophthalmologists were recruited to each examine 20 randomly selected OCT reports and evaluate the likelihood of glaucoma for each report on a scale of 0-100. Eye movements were collected using a Pupil Labs Core eye-tracker. Fixation heat maps were generated using fixation data. Results: A model trained with traditional saliency mapping resulted in a correlation coefficient (CC) value of 0.208, a Normalized Scanpath Saliency (NSS) value of 0.8172, a Kullback-Leibler (KLD) value of 2.573, and a Structural Similarity Index (SSIM) of 0.169. Conclusions: The TranSalNet model was able to predict fixations within certain regions of the OCT report with reasonable accuracy, but more data is needed to improve model accuracy. Future steps include increasing data collection, improving quality of data, and modifying the model architecture.

11.
AJNR Am J Neuroradiol ; 45(5): 637-646, 2024 05 09.
Artigo em Inglês | MEDLINE | ID: mdl-38604737

RESUMO

BACKGROUND AND PURPOSE: Several recent works using resting-state fMRI suggest possible alterations of resting-state functional connectivity after mild traumatic brain injury. However, the literature is plagued by various analysis approaches and small study cohorts, resulting in an inconsistent array of reported findings. In this study, we aimed to investigate differences in whole-brain resting-state functional connectivity between adult patients with mild traumatic brain injury within 1 month of injury and healthy control subjects using several comprehensive resting-state functional connectivity measurement methods and analyses. MATERIALS AND METHODS: A total of 123 subjects (72 patients with mild traumatic brain injury and 51 healthy controls) were included. A standard fMRI preprocessing pipeline was used. ROI/seed-based analyses were conducted using 4 standard brain parcellation methods, and the independent component analysis method was applied to measure resting-state functional connectivity. The fractional amplitude of low-frequency fluctuations was also measured. Group comparisons were performed on all measurements with appropriate whole-brain multilevel statistical analysis and correction. RESULTS: There were no significant differences in age, sex, education, and hand preference between groups as well as no significant correlation between all measurements and these potential confounders. We found that each resting-state functional connectivity measurement revealed various regions or connections that were different between groups. However, after we corrected for multiple comparisons, the results showed no statistically significant differences between groups in terms of resting-state functional connectivity across methods and analyses. CONCLUSIONS: Although previous studies point to multiple regions and networks as possible mild traumatic brain injury biomarkers, this study shows that the effect of mild injury on brain resting-state functional connectivity has not survived after rigorous statistical correction. A further study using subject-level connectivity analyses may be necessary due to both subtle and variable effects of mild traumatic brain injury on brain functional connectivity across individuals.


Assuntos
Imageamento por Ressonância Magnética , Humanos , Masculino , Feminino , Adulto , Imageamento por Ressonância Magnética/métodos , Pessoa de Meia-Idade , Concussão Encefálica/diagnóstico por imagem , Concussão Encefálica/fisiopatologia , Descanso , Adulto Jovem , Conectoma/métodos , Encéfalo/diagnóstico por imagem , Encéfalo/fisiopatologia , Mapeamento Encefálico/métodos , Rede Nervosa/diagnóstico por imagem , Rede Nervosa/fisiopatologia
12.
AJNR Am J Neuroradiol ; 45(6): 795-801, 2024 06 07.
Artigo em Inglês | MEDLINE | ID: mdl-38637022

RESUMO

BACKGROUND: Mild traumatic brain injury is theorized to cause widespread functional changes to the brain. Resting-state fMRI may be able to measure functional connectivity changes after traumatic brain injury, but resting-state fMRI studies are heterogeneous, using numerous techniques to study ROIs across various resting-state networks. PURPOSE: We systematically reviewed the literature to ascertain whether adult patients who have experienced mild traumatic brain injury show consistent functional connectivity changes on resting-state -fMRI, compared with healthy patients. DATA SOURCES: We used 5 databases (PubMed, EMBASE, Cochrane Central, Scopus, Web of Science). STUDY SELECTION: Five databases (PubMed, EMBASE, Cochrane Central, Scopus, and Web of Science) were searched for research published since 2010. Search strategies used keywords of "functional MR imaging" and "mild traumatic brain injury" as well as related terms. All results were screened at the abstract and title levels by 4 reviewers according to predefined inclusion and exclusion criteria. For full-text inclusion, each study was evaluated independently by 2 reviewers, with discordant screening settled by consensus. DATA ANALYSIS: Data regarding article characteristics, cohort demographics, fMRI scan parameters, data analysis processing software, atlas used, data characteristics, and statistical analysis information were extracted. DATA SYNTHESIS: Across 66 studies, 80 areas were analyzed 239 times for at least 1 time point, most commonly using independent component analysis. The most analyzed areas and networks were the whole brain, the default mode network, and the salience network. Reported functional connectivity changes varied, though there may be a slight trend toward decreased whole-brain functional connectivity within 1 month of traumatic brain injury and there may be differences based on the time since injury. LIMITATIONS: Studies of military, sports-related traumatic brain injury, and pediatric patients were excluded. Due to the high number of relevant studies and data heterogeneity, we could not be as granular in the analysis as we would have liked. CONCLUSIONS: Reported functional connectivity changes varied, even within the same region and network, at least partially reflecting differences in technical parameters, preprocessing software, and analysis methods as well as probable differences in individual injury. There is a need for novel rs-fMRI techniques that better capture subject-specific functional connectivity changes.


Assuntos
Concussão Encefálica , Imageamento por Ressonância Magnética , Humanos , Imageamento por Ressonância Magnética/métodos , Concussão Encefálica/diagnóstico por imagem , Concussão Encefálica/fisiopatologia , Encéfalo/diagnóstico por imagem , Encéfalo/fisiopatologia , Descanso , Rede Nervosa/diagnóstico por imagem , Rede Nervosa/fisiopatologia , Mapeamento Encefálico/métodos , Conectoma/métodos
13.
J Appl Physiol (1985) ; 136(5): 1144-1156, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38420676

RESUMO

Smaller mean airway tree caliber is associated with airflow obstruction and chronic obstructive pulmonary disease (COPD). We investigated whether airway tree caliber heterogeneity was associated with airflow obstruction and COPD. Two community-based cohorts (MESA Lung, CanCOLD) and a longitudinal case-control study of COPD (SPIROMICS) performed spirometry and computed tomography measurements of airway lumen diameters at standard anatomical locations (trachea-to-subsegments) and total lung volume. Percent-predicted airway lumen diameters were calculated using sex-specific reference equations accounting for age, height, and lung volume. The association of airway tree caliber heterogeneity, quantified as the standard deviation (SD) of percent-predicted airway lumen diameters, with baseline forced expired volume in 1-second (FEV1), FEV1/forced vital capacity (FEV1/FVC) and COPD, as well as longitudinal spirometry, were assessed using regression models adjusted for age, sex, height, race-ethnicity, and mean airway tree caliber. Among 2,505 MESA Lung participants (means ± SD age: 69 ± 9 yr; 53% female, mean airway tree caliber: 99 ± 10% predicted, airway tree caliber heterogeneity: 14 ± 5%; median follow-up: 6.1 yr), participants in the highest quartile of airway tree caliber heterogeneity exhibited lower FEV1 (adjusted mean difference: -125 mL, 95%CI: -171,-79), lower FEV1/FVC (adjusted mean difference: -0.01, 95%CI: -0.02,-0.01), and higher odds of COPD (adjusted odds ratio: 1.42, 95%CI: 1.01-2.02) when compared with the lowest quartile, whereas longitudinal changes in FEV1 and FEV1/FVC did not differ significantly. Observations in CanCOLD and SPIROMICS were consistent. Among older adults, airway tree caliber heterogeneity was associated with airflow obstruction and COPD at baseline but was not associated with longitudinal changes in spirometry.NEW & NOTEWORTHY In this study, by leveraging two community-based samples and a case-control study of heavy smokers, we show that among older adults, airway tree caliber heterogeneity quantified by CT is associated with airflow obstruction and COPD independent of age, sex, height, race-ethnicity, and dysanapsis. These observations suggest that airway tree caliber heterogeneity is a structural trait associated with low baseline lung function and normal decline trajectory that is relevant to COPD.


Assuntos
Pulmão , Doença Pulmonar Obstrutiva Crônica , Espirometria , Humanos , Feminino , Masculino , Idoso , Doença Pulmonar Obstrutiva Crônica/fisiopatologia , Espirometria/métodos , Pulmão/fisiopatologia , Pulmão/diagnóstico por imagem , Volume Expiratório Forçado/fisiologia , Estudos de Casos e Controles , Capacidade Vital/fisiologia , Pessoa de Meia-Idade , Estudos Longitudinais , Tomografia Computadorizada por Raios X/métodos , Obstrução das Vias Respiratórias/fisiopatologia , Idoso de 80 Anos ou mais
14.
EClinicalMedicine ; 73: 102660, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38846068

RESUMO

Background: The field of precision medicine endeavors to transform the healthcare industry by advancing individualised strategies for diagnosis, treatment modalities, and predictive assessments. This is achieved by utilizing extensive multidimensional biological datasets encompassing diverse components, such as an individual's genetic makeup, functional attributes, and environmental influences. Artificial intelligence (AI) systems, namely machine learning (ML) and deep learning (DL), have exhibited remarkable efficacy in predicting the potential occurrence of specific cancers and cardiovascular diseases (CVD). Methods: We conducted a comprehensive scoping review guided by the PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analyses) framework. Our search strategy involved combining key terms related to CVD and AI using the Boolean operator AND. In August 2023, we conducted an extensive search across reputable scholarly databases including Google Scholar, PubMed, IEEE Xplore, ScienceDirect, Web of Science, and arXiv to gather relevant academic literature on personalised medicine for CVD. Subsequently, in January 2024, we extended our search to include internet search engines such as Google and various CVD websites. These searches were further updated in March 2024. Additionally, we reviewed the reference lists of the final selected research articles to identify any additional relevant literature. Findings: A total of 2307 records were identified during the process of conducting the study, consisting of 564 entries from external sites like arXiv and 1743 records found through database searching. After 430 duplicate articles were eliminated, 1877 items that remained were screened for relevancy. In this stage, 1241 articles remained for additional review after 158 irrelevant articles and 478 articles with insufficient data were removed. 355 articles were eliminated for being inaccessible, 726 for being written in a language other than English, and 281 for not having undergone peer review. Consequently, 121 studies were deemed suitable for inclusion in the qualitative synthesis. At the intersection of CVD, AI, and precision medicine, we found important scientific findings in our scoping review. Intricate pattern extraction from large, complicated genetic datasets is a skill that AI algorithms excel at, allowing for accurate disease diagnosis and CVD risk prediction. Furthermore, these investigations have uncovered unique genetic biomarkers linked to CVD, providing insight into the workings of the disease and possible treatment avenues. The construction of more precise predictive models and personalised treatment plans based on the genetic profiles of individual patients has been made possible by the revolutionary advancement of CVD risk assessment through the integration of AI and genomics. Interpretation: The systematic methodology employed ensured the thorough examination of available literature and the inclusion of relevant studies, contributing to the robustness and reliability of the study's findings. Our analysis stresses a crucial point in terms of the adaptability and versatility of AI solutions. AI algorithms designed in non-CVD domains such as in oncology, often include ideas and tactics that might be modified to address cardiovascular problems. Funding: No funding received.

15.
IEEE J Biomed Health Inform ; 27(6): 2932-2943, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37023157

RESUMO

Automatically identifying the structural substrates underlying cardiac abnormalities can potentially provide real-time guidance for interventional procedures. With the knowledge of cardiac tissue substrates, the treatment of complex arrhythmias such as atrial fibrillation and ventricular tachycardia can be further optimized by detecting arrhythmia substrates to target for treatment (i.e., adipose) and identifying critical structures to avoid. Optical coherence tomography (OCT) is a real-time imaging modality that aids in addressing this need. Existing approaches for cardiac image analysis mainly rely on fully supervised learning techniques, which suffer from the drawback of workload on labor-intensive annotation process of pixel-wise labeling. To lessen the need for pixel-wise labeling, we develop a two-stage deep learning framework for cardiac adipose tissue segmentation using image-level annotations on OCT images of human cardiac substrates. In particular, we integrate class activation mapping with superpixel segmentation to solve the sparse tissue seed challenge raised in cardiac tissue segmentation. Our study bridges the gap between the demand on automatic tissue analysis and the lack of high-quality pixel-wise annotations. To the best of our knowledge, this is the first study that attempts to address cardiac tissue segmentation on OCT images via weakly supervised learning techniques. Within an in-vitro human cardiac OCT dataset, we demonstrate that our weakly supervised approach on image-level annotations achieves comparable performance as fully supervised methods trained on pixel-wise annotations.


Assuntos
Fibrilação Atrial , Coração , Humanos , Tecido Adiposo/diagnóstico por imagem , Processamento de Imagem Assistida por Computador , Conhecimento
16.
ArXiv ; 2023 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-36713234

RESUMO

Focused ultrasound (FUS) can be used to open the blood-brain barrier (BBB), and MRI with contrast agents can detect that opening. However, repeated use of gadolinium-based contrast agents (GBCAs) presents safety concerns to patients. This study is the first to propose the idea of modeling a volume transfer constant (Ktrans) through deep learning to reduce the dosage of contrast agents. The goal of the study is not only to reconstruct artificial intelligence (AI) derived Ktrans images but to also enhance the intensity with low dosage contrast agent T1 weighted MRI scans. We successfully validated this idea through a previous state-of-the-art temporal network algorithm, which focused on extracting time domain features at the voxel level. Then we used a Spatiotemporal Network (ST-Net), composed of a spatiotemporal convolutional neural network (CNN)-based deep learning architecture with the addition of a three-dimensional CNN encoder, to improve the model performance. We tested the ST-Net model on ten datasets of FUS-induced BBB-openings aquired from different sides of the mouse brain. ST-Net successfully detected and enhanced BBB-opening signals without sacrificing spatial domain information. ST-Net was shown to be a promising method of reducing the need of contrast agents for modeling BBB-opening K-trans maps from time-series Dynamic Contrast-Enhanced Magnetic Resonance Imaging (DCE-MRI) scans.

17.
Ann Am Thorac Soc ; 20(5): 728-737, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36790913

RESUMO

Rationale: Obstructive sleep apnea (OSA) has been hypothesized to be a risk factor in interstitial lung disease (ILD) and is associated with radiological markers that may represent the earlier stages of ILD. Prior studies have been limited by their cross-sectional design and potential confounding by body habitus. Objectives: To test the hypothesis that OSA severity is associated with more high-attenuation areas (HAAs) on computed tomography and worse lung function over time among older community-dwelling adults. Methods: We used data from participants in the MESA (Multi-Ethnic Study of Atherosclerosis) who had apnea-hypopnea index (AHI) measured from polysomnography (2010-2013), high attenuation areas (HAAs, -600 to -250 Hounsfield units, n = 784), assessments from exams 5 (2010-2012) and 6 (2016-2018) full-lung computed tomography scans, and spirometry assessments (n = 677). Linear mixed-effects models with random intercept were used to examine associations of OSA severity (i.e., AHI and hypoxic burden) with changes in HAAs, total lung volumes, and forced vital capacity (FVC) between exams 5 and 6. Potential confounders were adjusted for in the model, including age, sex, smoking history, height, and weight. Results: Among those with a higher AHI there were more men and a higher body mass index. Participants with AHI ⩾ 15 events/h and in the highest hypoxic burden quartile each had increases in HAAs of 11.30% (95% confidence interval [CI], 3.74-19.35%) and 9.85% (95% CI, 1.40-19.01%) per 10 years, respectively. There was a more rapid decline in total lung volumes imaged and FVC among those with AHI ⩾ 15 events/h of 220.2 ml (95% CI, 47.8-392.5 ml) and 3.63% (95% CI, 0.43-6.83%) per 10 years, respectively. Conclusions: A greater burden of hypoxia related to obstructive events during sleep was associated with increased lung densities over time and a more rapid decline in lung volumes regardless of body habitus. Our findings suggest OSA may be a contributing factor in the early stages of ILD.


Assuntos
Doenças Pulmonares Intersticiais , Apneia Obstrutiva do Sono , Masculino , Adulto , Humanos , Estudos Transversais , Apneia Obstrutiva do Sono/complicações , Doenças Pulmonares Intersticiais/complicações , Pulmão , Tomografia Computadorizada por Raios X
18.
Neuroimage ; 59(3): 2110-23, 2012 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-22032945

RESUMO

We present the first computational study investigating the electric field (E-field) strength generated by various electroconvulsive therapy (ECT) electrode configurations in specific brain regions of interest (ROIs) that have putative roles in the therapeutic action and/or adverse side effects of ECT. This study also characterizes the impact of the white matter (WM) conductivity anisotropy on the E-field distribution. A finite element head model incorporating tissue heterogeneity and WM anisotropic conductivity was constructed based on structural magnetic resonance imaging (MRI) and diffusion tensor MRI data. We computed the spatial E-field distributions generated by three standard ECT electrode placements including bilateral (BL), bifrontal (BF), and right unilateral (RUL) and an investigational electrode configuration for focal electrically administered seizure therapy (FEAST). The key results are that (1) the median E-field strength over the whole brain is 3.9, 1.5, 2.3, and 2.6 V/cm for the BL, BF, RUL, and FEAST electrode configurations, respectively, which coupled with the broad spread of the BL E-field suggests a biophysical basis for observations of superior efficacy of BL ECT compared to BF and RUL ECT; (2) in the hippocampi, BL ECT produces a median E-field of 4.8 V/cm that is 1.5-2.8 times stronger than that for the other electrode configurations, consistent with the more pronounced amnestic effects of BL ECT; and (3) neglecting the WM conductivity anisotropy results in E-field strength error up to 18% overall and up to 39% in specific ROIs, motivating the inclusion of the WM conductivity anisotropy in accurate head models. This computational study demonstrates how the realistic finite element head model incorporating tissue conductivity anisotropy provides quantitative insight into the biophysics of ECT, which may shed light on the differential clinical outcomes seen with various forms of ECT, and may guide the development of novel stimulation paradigms with improved risk/benefit ratio.


Assuntos
Encéfalo/anatomia & histologia , Eletroconvulsoterapia/estatística & dados numéricos , Campos Eletromagnéticos , Cabeça/anatomia & histologia , Adulto , Anisotropia , Imagem de Tensor de Difusão , Condutividade Elétrica , Eletrodos , Análise de Elementos Finitos , Lateralidade Funcional/fisiologia , Humanos , Processamento de Imagem Assistida por Computador , Imageamento por Ressonância Magnética , Masculino , Modelos Anatômicos , Modelos Estatísticos
19.
Annu Int Conf IEEE Eng Med Biol Soc ; 2022: 2115-2118, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-36085725

RESUMO

The ability to extrapolate gene expression dynamics in living single cells requires robust cell segmentation, and one of the challenges is the amorphous or irregularly shaped cell boundaries. To address this issue, we modified the U-Net architecture to segment cells in fluorescence widefield microscopy images and quantitatively evaluated its performance. We also proposed a novel loss function approach that emphasizes the segmentation accuracy on cell boundaries and encourages shape feature preservation. With a 97% sensitivity, 93% specificity, 91% Jaccard similarity, and 95% Dice coefficient, our proposed method called Residual Attention U-Net with edge-enhancement surpassed the state-of-the-art U-Net in segmentation performance as evaluated by the traditional metrics. More remarkably, the same proposed candidate also performed the best in terms of the preservation of valuable shape features, namely area, eccentricity, major axis length, solidity and orientation. These improvements on shape feature preservation can serve as useful assets for downstream cell tracking and quantification of changes in cell statistics or features over time.


Assuntos
Benchmarking , Sequenciamento de Nucleotídeos em Larga Escala , Atenção , Forma Celular , Progressão da Doença , Humanos
20.
Front Hum Neurosci ; 16: 877326, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35431841

RESUMO

Diffusion MRI (dMRI) is widely used to investigate neuronal and structural development of brain. dMRI data is often contaminated with various types of artifacts. Hence, artifact type identification in dMRI volumes is an essential pre-processing step prior to carrying out any further analysis. Manual artifact identification amongst a large pool of dMRI data is a highly labor-intensive task. Previous attempts at automating this process are often limited to a binary classification ("poor" vs. "good" quality) of the dMRI volumes or focus on detecting a single type of artifact (e.g., motion, Eddy currents, etc.). In this work, we propose a deep learning-based automated multiclass artifact classifier for dMRI volumes. Our proposed framework operates in 2 steps. In the first step, the model predicts labels associated with 3D mutually exclusive collectively exhaustive (MECE) sub-volumes or "slabs" extracted from whole dMRI volumes. In the second step, through a voting process, the model outputs the artifact class present in the whole volume under investigation. We used two different datasets for training and evaluating our model. Specifically, we utilized 2,494 poor-quality dMRI volumes from the Adolescent Brain Cognitive Development (ABCD) and 4,226 from the Healthy Brain Network (HBN) dataset. Our results demonstrate accurate multiclass volume-level main artifact type prediction with 96.61 and 97.52% average accuracies on the ABCD and HBN test sets, respectively. Finally, in order to demonstrate the effectiveness of the proposed framework in dMRI pre-processing pipelines, we conducted a proof-of-concept dMRI analysis exploring the relationship between whole-brain fractional anisotropy (FA) and participant age, to test whether the use of our model improves the brain-age association.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA