Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
J Infect Dis ; 216(8): 981-989, 2017 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-28968776

RESUMO

Background: JC polyomavirus (JCPyV) is reactivated in approximately 20% of renal transplant recipients, and it may rarely cause JCPyV-associated nephropathy (JCPyVAN). Whereas progressive multifocal leukoencephalopathy of the brain is caused by rearranged neurotropic JCPyV, little is known about viral sequence variation in JCPyVAN owing to the rarity of this condition. Methods: Using single-molecule real-time sequencing, characterization of full-length JCPyV genomes in urine and plasma samples from 1 patient with JCPyVAN and 20 stable renal transplant recipients with JCPyV viruria was attempted. Sequence analysis of JCPyV strains was performed, with emphasis on the noncoding control region, the major capsid protein gene VP1, and the large T antigen gene. Results: Exclusively archetype strains were identified in urine from the patient with JCPyVAN. Full-length JCPyV sequences were not retrieved from plasma. Archetype strains were found in urine samples from 19 stable renal transplant recipients, with JCPyV quasispecies detected in 5 samples. In a patient with minor graft dysfunction, a strain with an archetype-like noncoding cont rol region was discovered. Individual point mutations were detected in both VP1 and large T antigen genes. Conclusions: Archetype JCPyV was dominant in the patient with JCPyVAN and in stable renal transplant recipients. Archetype rather than rearranged JCPyV seems to drive the pathogenesis of JCPyVAN.


Assuntos
Vírus JC/patogenicidade , Nefropatias/virologia , Transplante de Rim/efeitos adversos , Leucoencefalopatia Multifocal Progressiva/virologia , Infecções por Polyomavirus/virologia , Infecções Tumorais por Vírus/virologia , Adolescente , Adulto , Idoso , Pré-Escolar , Humanos , Vírus JC/genética , Vírus JC/isolamento & purificação , Pessoa de Meia-Idade , Transplantados , Adulto Jovem
2.
BMC Genomics ; 18(1): 790, 2017 Oct 16.
Artigo em Inglês | MEDLINE | ID: mdl-29037147

RESUMO

BACKGROUND: Propionibacterium freudenreichii is an industrially important bacterium granted the Generally Recognized as Safe (the GRAS) status, due to its long safe use in food bioprocesses. Despite the recognized role in the food industry and in the production of vitamin B12, as well as its documented health-promoting potential, P. freudenreichii remained poorly characterised at the genomic level. At present, only three complete genome sequences are available for the species. RESULTS: We used the PacBio RS II sequencing platform to generate complete genomes of 20 P. freudenreichii strains and compared them in detail. Comparative analyses revealed both sequence conservation and genome organisational diversity among the strains. Assembly from long reads resulted in the discovery of additional circular elements: two putative conjugative plasmids and three active, lysogenic bacteriophages. It also permitted characterisation of the CRISPR-Cas systems. The use of the PacBio sequencing platform allowed identification of DNA modifications, which in turn allowed characterisation of the restriction-modification systems together with their recognition motifs. The observed genomic differences suggested strain variation in surface piliation and specific mucus binding, which were validated by experimental studies. The phenotypic characterisation displayed large diversity between the strains in ability to utilise a range of carbohydrates, to grow at unfavourable conditions and to form a biofilm. CONCLUSION: The complete genome sequencing allowed detailed characterisation of the industrially important species, P. freudenreichii by facilitating the discovery of previously unknown features. The results presented here lay a solid foundation for future genetic and functional genomic investigations of this actinobacterial species.


Assuntos
Genômica/métodos , Propionibacterium freudenreichii/genética , Adaptação Fisiológica/genética , Genoma Bacteriano/genética , Ilhas Genômicas/genética , Plasmídeos/genética , Análise de Sequência
3.
Appl Environ Microbiol ; 82(19): 5756-62, 2016 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-27422834

RESUMO

UNLABELLED: Vancomycin-resistant enterococci (VRE) have become a major nosocomial threat. Enterococcus faecium is of special concern, as it can easily acquire new antibiotic resistances and is an excellent colonizer of the human intestinal tract. Several clinical studies have explored the potential use of beneficial bacteria to weed out opportunistic pathogens. Specifically, the widely studied Lactobacillus rhamnosus strain GG has been applied successfully in the context of VRE infections. Here, we provide new insight into the molecular mechanism underlying the effects of this model probiotic on VRE decolonization. Both clinical VRE isolates and L. rhamnosus GG express pili on their cell walls, which are the key modulators of their highly efficient colonization of the intestinal mucosa. We found that one of the VRE pilus clusters shares considerable sequence similarity with the SpaCBA-SrtC1 pilus cluster of L. rhamnosus GG. Remarkable immunological and functional similarities were discovered between the mucus-binding pili of L. rhamnosus GG and those of the clinical E. faecium strain E1165, which was characterized at the genome level. Moreover, E. faecium strain E1165 bound efficiently to mucus, which may be prevented by the presence of the mucus-binding SpaC protein or antibodies against L. rhamnosus GG or SpaC. These results present experimental support for a novel probiotic mechanism, in which the mucus-binding pili of L. rhamnosus GG prevent the binding of a potential pathogen to the host. Hence, we provide a molecular basis for the further exploitation of L. rhamnosus GG and its pilins for prophylaxis and treatment of VRE infections. IMPORTANCE: Concern about vancomycin-resistant Enterococcus faecium causing nosocomial infections is rising globally. The arsenal of antibiotic strategies to treat these infections is nearly exhausted, and hence, new treatment strategies are urgently needed. Here, we provide molecular evidence to underpin reports of the successful clinical application of Lactobacillus rhamnosus GG in VRE decolonization strategies. Our results provide support for a new molecular mechanism, in which probiotics can perform competitive exclusion and possibly immune interaction. Moreover, we spur further exploration of the potential of intact L. rhamnosus GG and purified SpaC pilin as prophylactic and curative agents of the VRE carrier state.


Assuntos
Enterococcus faecium/fisiologia , Fímbrias Bacterianas/metabolismo , Lacticaseibacillus rhamnosus/fisiologia , Interações Microbianas , Muco/microbiologia , Probióticos/metabolismo , Humanos
4.
Proteomics ; 14(16): 1890-4, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24909406

RESUMO

The present study reports a comparative proteome cataloging of a bovine mastitis and a human-associated Staphylococcus epidermidis strain with a specific focus on surfome (cell-wall bound and extracellular) proteins. Protein identification by 1DE coupled with LC-MS/MS analyses resulted in 1400 and 1287 proteins from the bovine (PM221) and human (ATCC12228) strains, respectively, covering over 50% of all predicted and more than 30% of all predicted surfome proteins in both strains. Comparison of the identification results suggests elevated levels of proteins involved in adherence, biofilm formation, signal transduction, house-keeping functions, and immune evasion in PM221, whereas ATCC12228 was more effective in expressing host defense evasion proteases, skin adaptation lipases, hemagglutination, and heavy-metal resistance proteins. Phenotypic analyses showed that only PM221 displays protein- and DNA-mediated adherent growth, and that PM221 was more efficient in cleaving tributyrin, a natural compound of milk fat under low CO2 conditions. These findings are in line with the identification data and suggest that distinct expression of lipases and adhesive surfome proteins could lead to the observed phenotypes. This study is the first extensive survey of S. epidermidis proteomes to date, providing several protein candidates to be examined for their roles in adaptation and virulence in vivo. All MS data have been deposited in the ProteomeXchange with identifier PXD000404 (http://proteomecentral.proteomexchange.org/dataset/PXD000404).


Assuntos
Proteínas de Bactérias/metabolismo , Infecções Estafilocócicas/microbiologia , Staphylococcus epidermidis/metabolismo , Fatores de Virulência/metabolismo , Animais , Proteínas de Bactérias/análise , Bovinos , Humanos , Proteoma/análise , Proteoma/metabolismo , Staphylococcus epidermidis/patogenicidade , Espectrometria de Massas em Tandem , Fatores de Virulência/análise
5.
J Proteome Res ; 13(8): 3748-3762, 2014 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-25014494

RESUMO

The present study reports comparative genomics and proteomics of Staphylococcus epidermidis (SE) strains isolated from bovine intramammary infection (PM221) and human hosts (ATCC12228 and RP62A). Genome-level profiling and protein expression analyses revealed that the bovine strain and the mildly infectious ATCC12228 strain are highly similar. Their genomes share high sequence identity and synteny, and both were predicted to encode the commensal-associated fdr marker gene. In contrast, PM221 was judged to differ from the sepsis-associated virulent human RP62A strain on the basis of distinct protein expression patterns and overall lack of genome synteny. The 2D DIGE and phenotypic analyses suggest that PM221 and ATCC12228 coordinate the TCA cycle activity and the formation of small colony variants in a way that could result in increased viability. Pilot experimental infection studies indicated that although ATCC12228 was able to infect a bovine host, the PM221 strain caused more severe clinical signs. Further investigation revealed strain- and condition-specific differences among surface bound proteins with likely roles in adhesion, biofilm formation, and immunomodulatory functions. Thus, our findings revealed a close link between the bovine and commensal-type human strains and suggest that humans could act as a reservoir of bovine mastitis-causing SE strains.

6.
BMC Genomics ; 15: 500, 2014 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-24948393

RESUMO

BACKGROUND: The species Neorhizobium galegae comprises two symbiovars that induce nodules on Galega plants. Strains of both symbiovars, orientalis and officinalis, induce nodules on the same plant species, but fix nitrogen only in their own host species. The mechanism behind this strict host specificity is not yet known. In this study, genome sequences of representatives of the two symbiovars were produced, providing new material for studying properties of N. galegae, with a special interest in genomic differences that may play a role in host specificity. RESULTS: The genome sequences confirmed that the two representative strains are much alike at a whole-genome level. Analysis of orthologous genes showed that N. galegae has a higher number of orthologs shared with Rhizobium than with Agrobacterium. The symbiosis plasmid of strain HAMBI 1141 was shown to transfer by conjugation under optimal conditions. In addition, both sequenced strains have an acetyltransferase gene which was shown to modify the Nod factor on the residue adjacent to the non-reducing-terminal residue. The working hypothesis that this gene is of major importance in directing host specificity of N. galegae could not, however, be confirmed. CONCLUSIONS: Strains of N. galegae have many genes differentiating them from strains of Agrobacterium, Rhizobium and Sinorhizobium. However, the mechanism behind their ecological difference is not evident. Although the final determinant for the strict host specificity of N. galegae remains to be identified, the gene responsible for the species-specific acetylation of the Nod factors was identified in this study. We propose the name noeT for this gene to reflect its role in symbiosis.


Assuntos
Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Genoma Bacteriano , Rhizobiaceae/genética , Rhizobiaceae/metabolismo , Acetilação , Biologia Computacional , Ordem dos Genes , Variação Genética , Genômica , Sequenciamento de Nucleotídeos em Larga Escala , Lipopolissacarídeos/biossíntese , Dados de Sequência Molecular , Simbiose/genética
7.
Appl Environ Microbiol ; 79(6): 1923-33, 2013 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-23315726

RESUMO

Four Lactobacillus strains were isolated from marketed probiotic products, including L. rhamnosus strains from Vifit (Friesland Campina) and Idoform (Ferrosan) and L. casei strains from Actimel (Danone) and Yakult (Yakult Honsa Co.). Their genomes and phenotypes were characterized and compared in detail with L. casei strain BL23 and L. rhamnosus strain GG. Phenotypic analysis of the new isolates indicated differences in carbohydrate utilization between L. casei and L. rhamnosus strains, which could be linked to their genotypes. The two isolated L. rhamnosus strains had genomes that were virtually identical to that of L. rhamnosus GG, testifying to their genomic stability and integrity in food products. The L. casei strains showed much greater genomic heterogeneity. Remarkably, all strains contained an intact spaCBA pilus gene cluster. However, only the L. rhamnosus strains produced mucus-binding SpaCBA pili under the conditions tested. Transcription initiation mapping demonstrated that the insertion of an iso-IS30 element upstream of the pilus gene cluster in L. rhamnosus strains but absent in L. casei strains had constituted a functional promoter driving pilus gene expression. All L. rhamnosus strains triggered an NF-κB response via Toll-like receptor 2 (TLR2) in a reporter cell line, whereas the L. casei strains did not or did so to a much lesser extent. This study demonstrates that the two L. rhamnosus strains isolated from probiotic products are virtually identical to L. rhamnosus GG and further highlights the differences between these and L. casei strains widely marketed as probiotics, in terms of genome content, mucus-binding and metabolic capacities, and host signaling capabilities.


Assuntos
Lacticaseibacillus casei/genética , Lacticaseibacillus casei/fisiologia , Lacticaseibacillus rhamnosus/genética , Lacticaseibacillus rhamnosus/fisiologia , Probióticos , Técnicas de Tipagem Bacteriana , Variação Genética , Genótipo , Lacticaseibacillus casei/imunologia , Lacticaseibacillus casei/metabolismo , Lacticaseibacillus rhamnosus/imunologia , Lacticaseibacillus rhamnosus/metabolismo , Fenótipo
8.
Microb Biotechnol ; 11(3): 510-526, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29488359

RESUMO

This study compared the secretomes (proteins exported out of the cell) of Propionibacterium freudenreichii of different origin to identify plausible adaptation factors. Phylosecretomics indicated strain-specific variation in secretion of adhesins/invasins (SlpA, InlA), cell-wall hydrolysing (NlpC60 peptidase, transglycosylase), protective (RpfB) and moonlighting (DnaK, GroEL, GaPDH, IDH, ENO, ClpB) enzymes and/or proteins. Detailed secretome comparison suggested that one of the cereal strains (JS14) released a tip fimbrillin (FimB) in to the extracellular milieu, which was in line with the electron microscopy and genomic analyses, indicating the lack of surface-associated fimbrial-like structures, predicting a mutated type-2 fimbrial gene cluster (fimB-fimA-srtC2) and production of anchorless FimB. Instead, the cereal strain produced high amounts of SlpB that tentatively mediated adherent growth on hydrophilic surface and adherence to hydrophobic material. One of the dairy strains (JS22), producing non-covalently bound surface-proteins (LspA, ClpB, AraI) and releasing SlpA and InlA into the culture medium, was found to form clumps under physiological conditions. The JS22 strain lacked SlpB and displayed a non-clumping and biofilm-forming phenotype only under conditions of increased ionic strength (300 mM NaCl). However, this strain cultured under the same conditions was not adherent to hydrophobic support, which supports the contributory role of SlpB in mediating hydrophobic interactions. Thus, this study reports significant secretome variation in P. freudenreichii and suggests that strain-specific differences in protein export, modification and protein-protein interactions have been the driving forces behind the adaptation of this bacterial species.


Assuntos
Proteínas de Bactérias/análise , Meios de Cultura/química , Propionibacterium freudenreichii/metabolismo , Proteoma/análise , Adesinas Bacterianas/análise , Pressão Osmótica , Transporte Proteico , Cloreto de Sódio/metabolismo
9.
Int J Food Microbiol ; 241: 39-48, 2017 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-27744211

RESUMO

Propionibacterium freudenreichii is a commercially important bacterium that is essential for the development of the characteristic eyes and flavor of Swiss-type cheeses. These bacteria grow actively and produce large quantities of flavor compounds during cheese ripening at warm temperatures but also appear to contribute to the aroma development during the subsequent cold storage of cheese. Here, we advance our understanding of the role of P. freudenreichii in cheese ripening by presenting the 2.68-Mbp annotated genome sequence of P. freudenreichii ssp. shermanii JS and determining its global transcriptional profiles during industrial cheese-making using transcriptome sequencing. The annotation of the genome identified a total of 2377 protein-coding genes and revealed the presence of enzymes and pathways for formation of several flavor compounds. Based on transcriptome profiling, the expression of 348 protein-coding genes was altered between the warm and cold room ripening of cheese. Several propionate, acetate, and diacetyl/acetoin production related genes had higher expression levels in the warm room, whereas a general slowing down of the metabolism and an activation of mobile genetic elements was seen in the cold room. A few ripening-related and amino acid catabolism involved genes were induced or remained active in cold room, indicating that strain JS contributes to the aroma development also during cold room ripening. In addition, we performed a comparative genomic analysis of strain JS and 29 other Propionibacterium strains of 10 different species, including an isolate of both P. freudenreichii subspecies freudenreichii and shermanii. Ortholog grouping of the predicted protein sequences revealed that close to 86% of the ortholog groups of strain JS, including a variety of ripening-related ortholog groups, were conserved across the P. freudenreichii isolates. Taken together, this study contributes to the understanding of the genomic basis of P. freudenreichii and sheds light on its activities during cheese ripening.


Assuntos
Queijo/microbiologia , Microbiologia de Alimentos , Propionibacterium freudenreichii/genética , Acetoína/química , Temperatura Baixa , Laticínios , Diacetil/química , Perfilação da Expressão Gênica , Genômica , Filogenia , RNA Ribossômico 16S/genética , Paladar , Transcriptoma
10.
Genome Announc ; 4(2)2016 Mar 17.
Artigo em Inglês | MEDLINE | ID: mdl-26988041

RESUMO

The emergence of vancomycin-resistant enterococci (VRE) has been associated with an increase in multidrug-resistant nosocomial infections. Here, we report the 2.614-Mb genome sequence of the Enterococcus faecium commensal isolate E1002, which will be instrumental in further understanding the determinants of the commensal and pathogenic lifestyle of E. faecium.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA